Loading…
A general approximation for the dynamics of quantitative traits
Selection, mutation and random drift affect the dynamics of allele frequencies and consequently of quantitative traits. While the macroscopic dynamics of quantitative traits can be measured, the underlying allele frequencies are typically unobserved. Can we understand how the macroscopic observables...
Saved in:
Published in: | arXiv.org 2016-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Selection, mutation and random drift affect the dynamics of allele frequencies and consequently of quantitative traits. While the macroscopic dynamics of quantitative traits can be measured, the underlying allele frequencies are typically unobserved. Can we understand how the macroscopic observables evolve without following these microscopic processes? The problem has previously been studied by analogy with statistical mechanics: the allele frequency distribution at each time is approximated by the stationary form, which maximizes entropy. We explore the limitations of this method when mutation is small (\(4N\!\mu |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1510.08344 |