Loading…
Efficient numerical scheme for solving the Allen‐Cahn equation
This article presents an efficient and robust algorithm for the numerical solution of the Allen‐Cahn equation, which represents the motion of antiphase boundaries. The proposed algorithm is based on the diagonally implicit fractional‐step θ − scheme for time discretization and the conforming finite...
Saved in:
Published in: | Numerical methods for partial differential equations 2018-09, Vol.34 (5), p.1820-1833 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2975-b2520a70b18715a231987ffaf3b362cecd223879b7ffd4f05976c1f2c8c9725c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2975-b2520a70b18715a231987ffaf3b362cecd223879b7ffd4f05976c1f2c8c9725c3 |
container_end_page | 1833 |
container_issue | 5 |
container_start_page | 1820 |
container_title | Numerical methods for partial differential equations |
container_volume | 34 |
creator | Shah, Abdullah Sabir, Muhammad Qasim, Muhammad Bastian, Peter |
description | This article presents an efficient and robust algorithm for the numerical solution of the Allen‐Cahn equation, which represents the motion of antiphase boundaries. The proposed algorithm is based on the diagonally implicit fractional‐step
θ
−
scheme for time discretization and the conforming finite element method for space discretization. For the steady‐state solution, both uniform and adaptive grids are used to illustrate the effectiveness of adaptive grids over uniform grids. For the unsteady solution, the diagonally implicit fractional‐step
θ
−
scheme is compared with other time discretization schemes in terms of computational cost and temporal error estimation accuracy. Numerical examples are presented to illustrate the capabilities of the proposed algorithm in solving nonlinear partial differential equations. |
doi_str_mv | 10.1002/num.22255 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2078290985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078290985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2975-b2520a70b18715a231987ffaf3b362cecd223879b7ffd4f05976c1f2c8c9725c3</originalsourceid><addsrcrecordid>eNp1kMFKAzEYhIMoWKsH3yDgycO2yb9Ns7lZSqtC1YsFbyGbJjZlm22TXaU3H8Fn9EmMrldPAz_f_MMMQpeUDCghMPTtdgAAjB2hHiWiyGAE42PUI3wkMsrEyyk6i3FDCKWMih66mVnrtDO-wclqgtOqwlGvzdZgWwcc6-rN-VfcrA2eVJXxXx-fU7X22Oxb1bjan6MTq6poLv60j5bz2fP0Lls83d5PJ4tMg-AsK4EBUZyUtOCUKcipKLi1yuZlPgZt9AogL7go03E1soQJPtbUgi604MB03kdX3d9dqPetiY3c1G3wKVIC4QWIVJYl6rqjdKhjDMbKXXBbFQ6SEvkzkEwt5e9AiR127LurzOF_UD4uHzrHN2DoZ3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078290985</pqid></control><display><type>article</type><title>Efficient numerical scheme for solving the Allen‐Cahn equation</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Shah, Abdullah ; Sabir, Muhammad ; Qasim, Muhammad ; Bastian, Peter</creator><creatorcontrib>Shah, Abdullah ; Sabir, Muhammad ; Qasim, Muhammad ; Bastian, Peter</creatorcontrib><description>This article presents an efficient and robust algorithm for the numerical solution of the Allen‐Cahn equation, which represents the motion of antiphase boundaries. The proposed algorithm is based on the diagonally implicit fractional‐step
θ
−
scheme for time discretization and the conforming finite element method for space discretization. For the steady‐state solution, both uniform and adaptive grids are used to illustrate the effectiveness of adaptive grids over uniform grids. For the unsteady solution, the diagonally implicit fractional‐step
θ
−
scheme is compared with other time discretization schemes in terms of computational cost and temporal error estimation accuracy. Numerical examples are presented to illustrate the capabilities of the proposed algorithm in solving nonlinear partial differential equations.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22255</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Allen‐Cahn equation ; Antiphase boundaries ; diagonally implicit fractional‐step θ − scheme ; Discretization ; DUNE‐PDELab ; Finite element method ; interfacial dynamics ; Nonlinear differential equations ; Nonlinear equations ; Nonlinear programming ; Partial differential equations ; Robustness (mathematics)</subject><ispartof>Numerical methods for partial differential equations, 2018-09, Vol.34 (5), p.1820-1833</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2975-b2520a70b18715a231987ffaf3b362cecd223879b7ffd4f05976c1f2c8c9725c3</citedby><cites>FETCH-LOGICAL-c2975-b2520a70b18715a231987ffaf3b362cecd223879b7ffd4f05976c1f2c8c9725c3</cites><orcidid>0000-0002-0337-1216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shah, Abdullah</creatorcontrib><creatorcontrib>Sabir, Muhammad</creatorcontrib><creatorcontrib>Qasim, Muhammad</creatorcontrib><creatorcontrib>Bastian, Peter</creatorcontrib><title>Efficient numerical scheme for solving the Allen‐Cahn equation</title><title>Numerical methods for partial differential equations</title><description>This article presents an efficient and robust algorithm for the numerical solution of the Allen‐Cahn equation, which represents the motion of antiphase boundaries. The proposed algorithm is based on the diagonally implicit fractional‐step
θ
−
scheme for time discretization and the conforming finite element method for space discretization. For the steady‐state solution, both uniform and adaptive grids are used to illustrate the effectiveness of adaptive grids over uniform grids. For the unsteady solution, the diagonally implicit fractional‐step
θ
−
scheme is compared with other time discretization schemes in terms of computational cost and temporal error estimation accuracy. Numerical examples are presented to illustrate the capabilities of the proposed algorithm in solving nonlinear partial differential equations.</description><subject>Algorithms</subject><subject>Allen‐Cahn equation</subject><subject>Antiphase boundaries</subject><subject>diagonally implicit fractional‐step θ − scheme</subject><subject>Discretization</subject><subject>DUNE‐PDELab</subject><subject>Finite element method</subject><subject>interfacial dynamics</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Nonlinear programming</subject><subject>Partial differential equations</subject><subject>Robustness (mathematics)</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEYhIMoWKsH3yDgycO2yb9Ns7lZSqtC1YsFbyGbJjZlm22TXaU3H8Fn9EmMrldPAz_f_MMMQpeUDCghMPTtdgAAjB2hHiWiyGAE42PUI3wkMsrEyyk6i3FDCKWMih66mVnrtDO-wclqgtOqwlGvzdZgWwcc6-rN-VfcrA2eVJXxXx-fU7X22Oxb1bjan6MTq6poLv60j5bz2fP0Lls83d5PJ4tMg-AsK4EBUZyUtOCUKcipKLi1yuZlPgZt9AogL7go03E1soQJPtbUgi604MB03kdX3d9dqPetiY3c1G3wKVIC4QWIVJYl6rqjdKhjDMbKXXBbFQ6SEvkzkEwt5e9AiR127LurzOF_UD4uHzrHN2DoZ3Q</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Shah, Abdullah</creator><creator>Sabir, Muhammad</creator><creator>Qasim, Muhammad</creator><creator>Bastian, Peter</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0337-1216</orcidid></search><sort><creationdate>201809</creationdate><title>Efficient numerical scheme for solving the Allen‐Cahn equation</title><author>Shah, Abdullah ; Sabir, Muhammad ; Qasim, Muhammad ; Bastian, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2975-b2520a70b18715a231987ffaf3b362cecd223879b7ffd4f05976c1f2c8c9725c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Allen‐Cahn equation</topic><topic>Antiphase boundaries</topic><topic>diagonally implicit fractional‐step θ − scheme</topic><topic>Discretization</topic><topic>DUNE‐PDELab</topic><topic>Finite element method</topic><topic>interfacial dynamics</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Nonlinear programming</topic><topic>Partial differential equations</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Abdullah</creatorcontrib><creatorcontrib>Sabir, Muhammad</creatorcontrib><creatorcontrib>Qasim, Muhammad</creatorcontrib><creatorcontrib>Bastian, Peter</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Abdullah</au><au>Sabir, Muhammad</au><au>Qasim, Muhammad</au><au>Bastian, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient numerical scheme for solving the Allen‐Cahn equation</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2018-09</date><risdate>2018</risdate><volume>34</volume><issue>5</issue><spage>1820</spage><epage>1833</epage><pages>1820-1833</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>This article presents an efficient and robust algorithm for the numerical solution of the Allen‐Cahn equation, which represents the motion of antiphase boundaries. The proposed algorithm is based on the diagonally implicit fractional‐step
θ
−
scheme for time discretization and the conforming finite element method for space discretization. For the steady‐state solution, both uniform and adaptive grids are used to illustrate the effectiveness of adaptive grids over uniform grids. For the unsteady solution, the diagonally implicit fractional‐step
θ
−
scheme is compared with other time discretization schemes in terms of computational cost and temporal error estimation accuracy. Numerical examples are presented to illustrate the capabilities of the proposed algorithm in solving nonlinear partial differential equations.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/num.22255</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0337-1216</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 2018-09, Vol.34 (5), p.1820-1833 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_proquest_journals_2078290985 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms Allen‐Cahn equation Antiphase boundaries diagonally implicit fractional‐step θ − scheme Discretization DUNE‐PDELab Finite element method interfacial dynamics Nonlinear differential equations Nonlinear equations Nonlinear programming Partial differential equations Robustness (mathematics) |
title | Efficient numerical scheme for solving the Allen‐Cahn equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20numerical%20scheme%20for%20solving%20the%20Allen%E2%80%90Cahn%20equation&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Shah,%20Abdullah&rft.date=2018-09&rft.volume=34&rft.issue=5&rft.spage=1820&rft.epage=1833&rft.pages=1820-1833&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22255&rft_dat=%3Cproquest_cross%3E2078290985%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2975-b2520a70b18715a231987ffaf3b362cecd223879b7ffd4f05976c1f2c8c9725c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078290985&rft_id=info:pmid/&rfr_iscdi=true |