Loading…

Efficient numerical scheme for solving the Allen‐Cahn equation

This article presents an efficient and robust algorithm for the numerical solution of the Allen‐Cahn equation, which represents the motion of antiphase boundaries. The proposed algorithm is based on the diagonally implicit fractional‐step θ − scheme for time discretization and the conforming finite...

Full description

Saved in:
Bibliographic Details
Published in:Numerical methods for partial differential equations 2018-09, Vol.34 (5), p.1820-1833
Main Authors: Shah, Abdullah, Sabir, Muhammad, Qasim, Muhammad, Bastian, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2975-b2520a70b18715a231987ffaf3b362cecd223879b7ffd4f05976c1f2c8c9725c3
cites cdi_FETCH-LOGICAL-c2975-b2520a70b18715a231987ffaf3b362cecd223879b7ffd4f05976c1f2c8c9725c3
container_end_page 1833
container_issue 5
container_start_page 1820
container_title Numerical methods for partial differential equations
container_volume 34
creator Shah, Abdullah
Sabir, Muhammad
Qasim, Muhammad
Bastian, Peter
description This article presents an efficient and robust algorithm for the numerical solution of the Allen‐Cahn equation, which represents the motion of antiphase boundaries. The proposed algorithm is based on the diagonally implicit fractional‐step θ − scheme for time discretization and the conforming finite element method for space discretization. For the steady‐state solution, both uniform and adaptive grids are used to illustrate the effectiveness of adaptive grids over uniform grids. For the unsteady solution, the diagonally implicit fractional‐step θ − scheme is compared with other time discretization schemes in terms of computational cost and temporal error estimation accuracy. Numerical examples are presented to illustrate the capabilities of the proposed algorithm in solving nonlinear partial differential equations.
doi_str_mv 10.1002/num.22255
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2078290985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078290985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2975-b2520a70b18715a231987ffaf3b362cecd223879b7ffd4f05976c1f2c8c9725c3</originalsourceid><addsrcrecordid>eNp1kMFKAzEYhIMoWKsH3yDgycO2yb9Ns7lZSqtC1YsFbyGbJjZlm22TXaU3H8Fn9EmMrldPAz_f_MMMQpeUDCghMPTtdgAAjB2hHiWiyGAE42PUI3wkMsrEyyk6i3FDCKWMih66mVnrtDO-wclqgtOqwlGvzdZgWwcc6-rN-VfcrA2eVJXxXx-fU7X22Oxb1bjan6MTq6poLv60j5bz2fP0Lls83d5PJ4tMg-AsK4EBUZyUtOCUKcipKLi1yuZlPgZt9AogL7go03E1soQJPtbUgi604MB03kdX3d9dqPetiY3c1G3wKVIC4QWIVJYl6rqjdKhjDMbKXXBbFQ6SEvkzkEwt5e9AiR127LurzOF_UD4uHzrHN2DoZ3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078290985</pqid></control><display><type>article</type><title>Efficient numerical scheme for solving the Allen‐Cahn equation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Shah, Abdullah ; Sabir, Muhammad ; Qasim, Muhammad ; Bastian, Peter</creator><creatorcontrib>Shah, Abdullah ; Sabir, Muhammad ; Qasim, Muhammad ; Bastian, Peter</creatorcontrib><description>This article presents an efficient and robust algorithm for the numerical solution of the Allen‐Cahn equation, which represents the motion of antiphase boundaries. The proposed algorithm is based on the diagonally implicit fractional‐step θ − scheme for time discretization and the conforming finite element method for space discretization. For the steady‐state solution, both uniform and adaptive grids are used to illustrate the effectiveness of adaptive grids over uniform grids. For the unsteady solution, the diagonally implicit fractional‐step θ − scheme is compared with other time discretization schemes in terms of computational cost and temporal error estimation accuracy. Numerical examples are presented to illustrate the capabilities of the proposed algorithm in solving nonlinear partial differential equations.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22255</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Allen‐Cahn equation ; Antiphase boundaries ; diagonally implicit fractional‐step θ − scheme ; Discretization ; DUNE‐PDELab ; Finite element method ; interfacial dynamics ; Nonlinear differential equations ; Nonlinear equations ; Nonlinear programming ; Partial differential equations ; Robustness (mathematics)</subject><ispartof>Numerical methods for partial differential equations, 2018-09, Vol.34 (5), p.1820-1833</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2975-b2520a70b18715a231987ffaf3b362cecd223879b7ffd4f05976c1f2c8c9725c3</citedby><cites>FETCH-LOGICAL-c2975-b2520a70b18715a231987ffaf3b362cecd223879b7ffd4f05976c1f2c8c9725c3</cites><orcidid>0000-0002-0337-1216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shah, Abdullah</creatorcontrib><creatorcontrib>Sabir, Muhammad</creatorcontrib><creatorcontrib>Qasim, Muhammad</creatorcontrib><creatorcontrib>Bastian, Peter</creatorcontrib><title>Efficient numerical scheme for solving the Allen‐Cahn equation</title><title>Numerical methods for partial differential equations</title><description>This article presents an efficient and robust algorithm for the numerical solution of the Allen‐Cahn equation, which represents the motion of antiphase boundaries. The proposed algorithm is based on the diagonally implicit fractional‐step θ − scheme for time discretization and the conforming finite element method for space discretization. For the steady‐state solution, both uniform and adaptive grids are used to illustrate the effectiveness of adaptive grids over uniform grids. For the unsteady solution, the diagonally implicit fractional‐step θ − scheme is compared with other time discretization schemes in terms of computational cost and temporal error estimation accuracy. Numerical examples are presented to illustrate the capabilities of the proposed algorithm in solving nonlinear partial differential equations.</description><subject>Algorithms</subject><subject>Allen‐Cahn equation</subject><subject>Antiphase boundaries</subject><subject>diagonally implicit fractional‐step θ − scheme</subject><subject>Discretization</subject><subject>DUNE‐PDELab</subject><subject>Finite element method</subject><subject>interfacial dynamics</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Nonlinear programming</subject><subject>Partial differential equations</subject><subject>Robustness (mathematics)</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEYhIMoWKsH3yDgycO2yb9Ns7lZSqtC1YsFbyGbJjZlm22TXaU3H8Fn9EmMrldPAz_f_MMMQpeUDCghMPTtdgAAjB2hHiWiyGAE42PUI3wkMsrEyyk6i3FDCKWMih66mVnrtDO-wclqgtOqwlGvzdZgWwcc6-rN-VfcrA2eVJXxXx-fU7X22Oxb1bjan6MTq6poLv60j5bz2fP0Lls83d5PJ4tMg-AsK4EBUZyUtOCUKcipKLi1yuZlPgZt9AogL7go03E1soQJPtbUgi604MB03kdX3d9dqPetiY3c1G3wKVIC4QWIVJYl6rqjdKhjDMbKXXBbFQ6SEvkzkEwt5e9AiR127LurzOF_UD4uHzrHN2DoZ3Q</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Shah, Abdullah</creator><creator>Sabir, Muhammad</creator><creator>Qasim, Muhammad</creator><creator>Bastian, Peter</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0337-1216</orcidid></search><sort><creationdate>201809</creationdate><title>Efficient numerical scheme for solving the Allen‐Cahn equation</title><author>Shah, Abdullah ; Sabir, Muhammad ; Qasim, Muhammad ; Bastian, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2975-b2520a70b18715a231987ffaf3b362cecd223879b7ffd4f05976c1f2c8c9725c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Allen‐Cahn equation</topic><topic>Antiphase boundaries</topic><topic>diagonally implicit fractional‐step θ − scheme</topic><topic>Discretization</topic><topic>DUNE‐PDELab</topic><topic>Finite element method</topic><topic>interfacial dynamics</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Nonlinear programming</topic><topic>Partial differential equations</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Abdullah</creatorcontrib><creatorcontrib>Sabir, Muhammad</creatorcontrib><creatorcontrib>Qasim, Muhammad</creatorcontrib><creatorcontrib>Bastian, Peter</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Abdullah</au><au>Sabir, Muhammad</au><au>Qasim, Muhammad</au><au>Bastian, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient numerical scheme for solving the Allen‐Cahn equation</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2018-09</date><risdate>2018</risdate><volume>34</volume><issue>5</issue><spage>1820</spage><epage>1833</epage><pages>1820-1833</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>This article presents an efficient and robust algorithm for the numerical solution of the Allen‐Cahn equation, which represents the motion of antiphase boundaries. The proposed algorithm is based on the diagonally implicit fractional‐step θ − scheme for time discretization and the conforming finite element method for space discretization. For the steady‐state solution, both uniform and adaptive grids are used to illustrate the effectiveness of adaptive grids over uniform grids. For the unsteady solution, the diagonally implicit fractional‐step θ − scheme is compared with other time discretization schemes in terms of computational cost and temporal error estimation accuracy. Numerical examples are presented to illustrate the capabilities of the proposed algorithm in solving nonlinear partial differential equations.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/num.22255</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0337-1216</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2018-09, Vol.34 (5), p.1820-1833
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2078290985
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Allen‐Cahn equation
Antiphase boundaries
diagonally implicit fractional‐step θ − scheme
Discretization
DUNE‐PDELab
Finite element method
interfacial dynamics
Nonlinear differential equations
Nonlinear equations
Nonlinear programming
Partial differential equations
Robustness (mathematics)
title Efficient numerical scheme for solving the Allen‐Cahn equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20numerical%20scheme%20for%20solving%20the%20Allen%E2%80%90Cahn%20equation&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Shah,%20Abdullah&rft.date=2018-09&rft.volume=34&rft.issue=5&rft.spage=1820&rft.epage=1833&rft.pages=1820-1833&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22255&rft_dat=%3Cproquest_cross%3E2078290985%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2975-b2520a70b18715a231987ffaf3b362cecd223879b7ffd4f05976c1f2c8c9725c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078290985&rft_id=info:pmid/&rfr_iscdi=true