Loading…
Independence of Optical Absorption on Auger Ionization in Single-Walled Carbon Nanotubes Revealed by Ultrafast e-h Photodoping
Auger-ionized carriers in a one-dimensional semiconductor are predicted to result in a strong band-gap renormalization. Isolated single-walled carbon nanotubes (SWCNT) under high-intensity laser irradiation exhibit strong nonlinear photoluminescence (PL) due to exciton-exciton annihilation (EEA). Th...
Saved in:
Published in: | arXiv.org 2015-08 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Auger-ionized carriers in a one-dimensional semiconductor are predicted to result in a strong band-gap renormalization. Isolated single-walled carbon nanotubes (SWCNT) under high-intensity laser irradiation exhibit strong nonlinear photoluminescence (PL) due to exciton-exciton annihilation (EEA). The presence of exciton disassociation during the rapid Auger-ionization caused by EEA would lead to a strong nonlinear absorption. By simultaneously measuring SWCNT PL and optical absorption of isolated SWCNT clusters in the PL saturation regime, we give evidence that Auger-ionized excitons do not disassociate but remain bound. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1508.04004 |