Loading…
Classification of some Solvable Leibniz Algebras
Leibniz algebras are certain generalization of Lie algebras. In this paper we give classification of non-Lie solvable (left) Leibniz algebras of dimension \(\leq 8\) with one dimensional derived subalgebra. We use the canonical forms for the congruence classes of matrices of bilinear forms to obtain...
Saved in:
Published in: | arXiv.org 2015-01 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Demir, Ismail Misra, Kailash C Stitzinger, Ernie |
description | Leibniz algebras are certain generalization of Lie algebras. In this paper we give classification of non-Lie solvable (left) Leibniz algebras of dimension \(\leq 8\) with one dimensional derived subalgebra. We use the canonical forms for the congruence classes of matrices of bilinear forms to obtain our result. Our approach can easily be extended to classify these algebras of higher dimensions. We also revisit the classification of three dimensional non-Lie solvable (left) Leibniz algebras. |
doi_str_mv | 10.48550/arxiv.1501.00890 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078549923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078549923</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-ef7fd475719bcecd1b6372e0603bc783fe479682cf45ae49ee4370ce0ec24ce63</originalsourceid><addsrcrecordid>eNotj8tKAzEUQIMgWGo_wF3A9Yw372RZBl8w0IXdlyS9kZQ40UlbxK-3oKuzO4dDyB2DXlql4MHP3_ncMwWsB7AOrsiCC8E6Kzm_IavWDgDAteFKiQWBofjWcsrRH3OdaE201Q-kb7WcfShIR8xhyj90Xd4xzL7dkuvkS8PVP5dk-_S4HV66cfP8OqzHzisuOkwm7aVRhrkQMe5Z0MJwBA0iRGNFQmmctjwmqTxKhyiFgYiAkcuIWizJ_Z_2c65fJ2zH3aGe5ulS3HEwVknnLle_IhBFJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078549923</pqid></control><display><type>article</type><title>Classification of some Solvable Leibniz Algebras</title><source>Publicly Available Content Database</source><creator>Demir, Ismail ; Misra, Kailash C ; Stitzinger, Ernie</creator><creatorcontrib>Demir, Ismail ; Misra, Kailash C ; Stitzinger, Ernie</creatorcontrib><description>Leibniz algebras are certain generalization of Lie algebras. In this paper we give classification of non-Lie solvable (left) Leibniz algebras of dimension \(\leq 8\) with one dimensional derived subalgebra. We use the canonical forms for the congruence classes of matrices of bilinear forms to obtain our result. Our approach can easily be extended to classify these algebras of higher dimensions. We also revisit the classification of three dimensional non-Lie solvable (left) Leibniz algebras.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1501.00890</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Canonical forms ; Classification ; Lie groups</subject><ispartof>arXiv.org, 2015-01</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078549923?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Demir, Ismail</creatorcontrib><creatorcontrib>Misra, Kailash C</creatorcontrib><creatorcontrib>Stitzinger, Ernie</creatorcontrib><title>Classification of some Solvable Leibniz Algebras</title><title>arXiv.org</title><description>Leibniz algebras are certain generalization of Lie algebras. In this paper we give classification of non-Lie solvable (left) Leibniz algebras of dimension \(\leq 8\) with one dimensional derived subalgebra. We use the canonical forms for the congruence classes of matrices of bilinear forms to obtain our result. Our approach can easily be extended to classify these algebras of higher dimensions. We also revisit the classification of three dimensional non-Lie solvable (left) Leibniz algebras.</description><subject>Algebra</subject><subject>Canonical forms</subject><subject>Classification</subject><subject>Lie groups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj8tKAzEUQIMgWGo_wF3A9Yw372RZBl8w0IXdlyS9kZQ40UlbxK-3oKuzO4dDyB2DXlql4MHP3_ncMwWsB7AOrsiCC8E6Kzm_IavWDgDAteFKiQWBofjWcsrRH3OdaE201Q-kb7WcfShIR8xhyj90Xd4xzL7dkuvkS8PVP5dk-_S4HV66cfP8OqzHzisuOkwm7aVRhrkQMe5Z0MJwBA0iRGNFQmmctjwmqTxKhyiFgYiAkcuIWizJ_Z_2c65fJ2zH3aGe5ulS3HEwVknnLle_IhBFJg</recordid><startdate>20150115</startdate><enddate>20150115</enddate><creator>Demir, Ismail</creator><creator>Misra, Kailash C</creator><creator>Stitzinger, Ernie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150115</creationdate><title>Classification of some Solvable Leibniz Algebras</title><author>Demir, Ismail ; Misra, Kailash C ; Stitzinger, Ernie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-ef7fd475719bcecd1b6372e0603bc783fe479682cf45ae49ee4370ce0ec24ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Canonical forms</topic><topic>Classification</topic><topic>Lie groups</topic><toplevel>online_resources</toplevel><creatorcontrib>Demir, Ismail</creatorcontrib><creatorcontrib>Misra, Kailash C</creatorcontrib><creatorcontrib>Stitzinger, Ernie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demir, Ismail</au><au>Misra, Kailash C</au><au>Stitzinger, Ernie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of some Solvable Leibniz Algebras</atitle><jtitle>arXiv.org</jtitle><date>2015-01-15</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Leibniz algebras are certain generalization of Lie algebras. In this paper we give classification of non-Lie solvable (left) Leibniz algebras of dimension \(\leq 8\) with one dimensional derived subalgebra. We use the canonical forms for the congruence classes of matrices of bilinear forms to obtain our result. Our approach can easily be extended to classify these algebras of higher dimensions. We also revisit the classification of three dimensional non-Lie solvable (left) Leibniz algebras.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1501.00890</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2078549923 |
source | Publicly Available Content Database |
subjects | Algebra Canonical forms Classification Lie groups |
title | Classification of some Solvable Leibniz Algebras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20some%20Solvable%20Leibniz%20Algebras&rft.jtitle=arXiv.org&rft.au=Demir,%20Ismail&rft.date=2015-01-15&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1501.00890&rft_dat=%3Cproquest%3E2078549923%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-ef7fd475719bcecd1b6372e0603bc783fe479682cf45ae49ee4370ce0ec24ce63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078549923&rft_id=info:pmid/&rfr_iscdi=true |