Loading…

Dual Regression

We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-09
Main Authors: Spady, Richard, Stouli, Sami
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution functions which, in its simplest form, is the dual program of a simultaneous estimator for linear location-scale models. We apply our general characterization to the specification and estimation of a flexible class of conditional distribution functions, and present asymptotic theory for the corresponding empirical dual regression process.
ISSN:2331-8422