Loading…
Algorithms for Data and Process Mining
This paper introduces a problem based classification for mining algorithms. Proposed classification specifies which algorithm is more suitable for the solution of which type of problems. It covers the most spectrum of issues and problems related to data mining starting from data preparation, to actu...
Saved in:
Published in: | FAIMA Business & Management Journal 2018-06, Vol.6 (2), p.45-56 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 56 |
container_issue | 2 |
container_start_page | 45 |
container_title | FAIMA Business & Management Journal |
container_volume | 6 |
creator | Zayoud, Maha Kotb, Yehia Ionescu, Sorin |
description | This paper introduces a problem based classification for mining algorithms. Proposed classification specifies which algorithm is more suitable for the solution of which type of problems. It covers the most spectrum of issues and problems related to data mining starting from data preparation, to actual mining, to result in interpretation and ending with result verification. Result verification is the process of verifying the correctness and consistency of the knowledge generated out of mining. The differences between data and process mining paradigms are highlighted and discussed in this paper. An explanation of well-known algorithms for data and process mining is presented, these algorithms are influential to the research community. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078624968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078624968</sourcerecordid><originalsourceid>FETCH-proquest_journals_20786249683</originalsourceid><addsrcrecordid>eNpjYeA0MjYx0TUxsLDgYOAtLs4yMDAwsjQ1MDIz5mRQc8xJzy_KLMnILVZIyy9ScEksSVRIzEtRCCjKT04tLlbwzczLzEvnYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzCzMjE0szC2PiVAEAD_8vCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078624968</pqid></control><display><type>article</type><title>Algorithms for Data and Process Mining</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><creator>Zayoud, Maha ; Kotb, Yehia ; Ionescu, Sorin</creator><creatorcontrib>Zayoud, Maha ; Kotb, Yehia ; Ionescu, Sorin</creatorcontrib><description>This paper introduces a problem based classification for mining algorithms. Proposed classification specifies which algorithm is more suitable for the solution of which type of problems. It covers the most spectrum of issues and problems related to data mining starting from data preparation, to actual mining, to result in interpretation and ending with result verification. Result verification is the process of verifying the correctness and consistency of the knowledge generated out of mining. The differences between data and process mining paradigms are highlighted and discussed in this paper. An explanation of well-known algorithms for data and process mining is presented, these algorithms are influential to the research community.</description><identifier>ISSN: 2344-4088</identifier><language>eng</language><publisher>Bucharest: Niculescu Publishing House</publisher><subject>Algorithms ; Big Data ; Data mining ; Datasets ; Information systems ; Knowledge discovery ; Management information systems ; Methods ; Sentiment analysis ; Social network analysis ; Social networks ; Studies</subject><ispartof>FAIMA Business & Management Journal, 2018-06, Vol.6 (2), p.45-56</ispartof><rights>Copyright Niculescu Publishing House Jun 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2078624968/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2078624968?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11686,36058,44361,74665</link.rule.ids></links><search><creatorcontrib>Zayoud, Maha</creatorcontrib><creatorcontrib>Kotb, Yehia</creatorcontrib><creatorcontrib>Ionescu, Sorin</creatorcontrib><title>Algorithms for Data and Process Mining</title><title>FAIMA Business & Management Journal</title><description>This paper introduces a problem based classification for mining algorithms. Proposed classification specifies which algorithm is more suitable for the solution of which type of problems. It covers the most spectrum of issues and problems related to data mining starting from data preparation, to actual mining, to result in interpretation and ending with result verification. Result verification is the process of verifying the correctness and consistency of the knowledge generated out of mining. The differences between data and process mining paradigms are highlighted and discussed in this paper. An explanation of well-known algorithms for data and process mining is presented, these algorithms are influential to the research community.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Information systems</subject><subject>Knowledge discovery</subject><subject>Management information systems</subject><subject>Methods</subject><subject>Sentiment analysis</subject><subject>Social network analysis</subject><subject>Social networks</subject><subject>Studies</subject><issn>2344-4088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpjYeA0MjYx0TUxsLDgYOAtLs4yMDAwsjQ1MDIz5mRQc8xJzy_KLMnILVZIyy9ScEksSVRIzEtRCCjKT04tLlbwzczLzEvnYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzCzMjE0szC2PiVAEAD_8vCQ</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Zayoud, Maha</creator><creator>Kotb, Yehia</creator><creator>Ionescu, Sorin</creator><general>Niculescu Publishing House</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>8A3</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20180601</creationdate><title>Algorithms for Data and Process Mining</title><author>Zayoud, Maha ; Kotb, Yehia ; Ionescu, Sorin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20786249683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Information systems</topic><topic>Knowledge discovery</topic><topic>Management information systems</topic><topic>Methods</topic><topic>Sentiment analysis</topic><topic>Social network analysis</topic><topic>Social networks</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zayoud, Maha</creatorcontrib><creatorcontrib>Kotb, Yehia</creatorcontrib><creatorcontrib>Ionescu, Sorin</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Entrepreneurship Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>FAIMA Business & Management Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zayoud, Maha</au><au>Kotb, Yehia</au><au>Ionescu, Sorin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithms for Data and Process Mining</atitle><jtitle>FAIMA Business & Management Journal</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>6</volume><issue>2</issue><spage>45</spage><epage>56</epage><pages>45-56</pages><issn>2344-4088</issn><abstract>This paper introduces a problem based classification for mining algorithms. Proposed classification specifies which algorithm is more suitable for the solution of which type of problems. It covers the most spectrum of issues and problems related to data mining starting from data preparation, to actual mining, to result in interpretation and ending with result verification. Result verification is the process of verifying the correctness and consistency of the knowledge generated out of mining. The differences between data and process mining paradigms are highlighted and discussed in this paper. An explanation of well-known algorithms for data and process mining is presented, these algorithms are influential to the research community.</abstract><cop>Bucharest</cop><pub>Niculescu Publishing House</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2344-4088 |
ispartof | FAIMA Business & Management Journal, 2018-06, Vol.6 (2), p.45-56 |
issn | 2344-4088 |
language | eng |
recordid | cdi_proquest_journals_2078624968 |
source | EBSCOhost Business Source Ultimate; ABI/INFORM Global |
subjects | Algorithms Big Data Data mining Datasets Information systems Knowledge discovery Management information systems Methods Sentiment analysis Social network analysis Social networks Studies |
title | Algorithms for Data and Process Mining |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithms%20for%20Data%20and%20Process%20Mining&rft.jtitle=FAIMA%20Business%20&%20Management%20Journal&rft.au=Zayoud,%20Maha&rft.date=2018-06-01&rft.volume=6&rft.issue=2&rft.spage=45&rft.epage=56&rft.pages=45-56&rft.issn=2344-4088&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078624968%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20786249683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078624968&rft_id=info:pmid/&rfr_iscdi=true |