Loading…

The derived moduli space of stable sheaves

We construct the derived scheme of stable sheaves on a smooth projective variety via derived moduli of finite graded modules over a graded ring. We do this by dividing the derived scheme of actions of Ciocan-Fontanine and Kapranov by a suitable algebraic gauge group. We show that the natural notion...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2010-04
Main Authors: Behrend, K, Ciocan-Fontanine, I, Hwang, J, Rose, M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Behrend, K
Ciocan-Fontanine, I
Hwang, J
Rose, M
description We construct the derived scheme of stable sheaves on a smooth projective variety via derived moduli of finite graded modules over a graded ring. We do this by dividing the derived scheme of actions of Ciocan-Fontanine and Kapranov by a suitable algebraic gauge group. We show that the natural notion of GIT-stability for graded modules reproduces stability for sheaves.
doi_str_mv 10.48550/arxiv.1004.1884
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078628231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078628231</sourcerecordid><originalsourceid>FETCH-LOGICAL-a511-3010bddfd25bc954bc636fa132709a74d4eb7613969d5f3c9ae6ed01195f6b803</originalsourceid><addsrcrecordid>eNotzc9LwzAUwPEgCI65u8eAN6H1vbwkTY4y_DEYeOl9JM0L66h2Nmvxz1fQ0_f2-Qpxh1BrZww8hum7X2oE0DU6p6_EShFh5bRSN2JTygkAlG2UMbQSD-2RZeKpXzjJjzHNQy_LOXQsxyzLJcSBZTlyWLjciuschsKb_65F-_Lcbt-q_fvrbvu0r4JBrAgQYko5KRM7b3TsLNkckFQDPjQ6aY6NRfLWJ5Op84EtJ0D0JtvogNbi_o89T-PXzOVyOI3z9Pl7PChonFVOEdIPvo5B3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078628231</pqid></control><display><type>article</type><title>The derived moduli space of stable sheaves</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Behrend, K ; Ciocan-Fontanine, I ; Hwang, J ; Rose, M</creator><creatorcontrib>Behrend, K ; Ciocan-Fontanine, I ; Hwang, J ; Rose, M</creatorcontrib><description>We construct the derived scheme of stable sheaves on a smooth projective variety via derived moduli of finite graded modules over a graded ring. We do this by dividing the derived scheme of actions of Ciocan-Fontanine and Kapranov by a suitable algebraic gauge group. We show that the natural notion of GIT-stability for graded modules reproduces stability for sheaves.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1004.1884</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Group theory ; Modules ; Sheaves ; Stability</subject><ispartof>arXiv.org, 2010-04</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078628231?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Behrend, K</creatorcontrib><creatorcontrib>Ciocan-Fontanine, I</creatorcontrib><creatorcontrib>Hwang, J</creatorcontrib><creatorcontrib>Rose, M</creatorcontrib><title>The derived moduli space of stable sheaves</title><title>arXiv.org</title><description>We construct the derived scheme of stable sheaves on a smooth projective variety via derived moduli of finite graded modules over a graded ring. We do this by dividing the derived scheme of actions of Ciocan-Fontanine and Kapranov by a suitable algebraic gauge group. We show that the natural notion of GIT-stability for graded modules reproduces stability for sheaves.</description><subject>Group theory</subject><subject>Modules</subject><subject>Sheaves</subject><subject>Stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzc9LwzAUwPEgCI65u8eAN6H1vbwkTY4y_DEYeOl9JM0L66h2Nmvxz1fQ0_f2-Qpxh1BrZww8hum7X2oE0DU6p6_EShFh5bRSN2JTygkAlG2UMbQSD-2RZeKpXzjJjzHNQy_LOXQsxyzLJcSBZTlyWLjciuschsKb_65F-_Lcbt-q_fvrbvu0r4JBrAgQYko5KRM7b3TsLNkckFQDPjQ6aY6NRfLWJ5Op84EtJ0D0JtvogNbi_o89T-PXzOVyOI3z9Pl7PChonFVOEdIPvo5B3g</recordid><startdate>20100412</startdate><enddate>20100412</enddate><creator>Behrend, K</creator><creator>Ciocan-Fontanine, I</creator><creator>Hwang, J</creator><creator>Rose, M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100412</creationdate><title>The derived moduli space of stable sheaves</title><author>Behrend, K ; Ciocan-Fontanine, I ; Hwang, J ; Rose, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a511-3010bddfd25bc954bc636fa132709a74d4eb7613969d5f3c9ae6ed01195f6b803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Group theory</topic><topic>Modules</topic><topic>Sheaves</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Behrend, K</creatorcontrib><creatorcontrib>Ciocan-Fontanine, I</creatorcontrib><creatorcontrib>Hwang, J</creatorcontrib><creatorcontrib>Rose, M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behrend, K</au><au>Ciocan-Fontanine, I</au><au>Hwang, J</au><au>Rose, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The derived moduli space of stable sheaves</atitle><jtitle>arXiv.org</jtitle><date>2010-04-12</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>We construct the derived scheme of stable sheaves on a smooth projective variety via derived moduli of finite graded modules over a graded ring. We do this by dividing the derived scheme of actions of Ciocan-Fontanine and Kapranov by a suitable algebraic gauge group. We show that the natural notion of GIT-stability for graded modules reproduces stability for sheaves.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1004.1884</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2010-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078628231
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Group theory
Modules
Sheaves
Stability
title The derived moduli space of stable sheaves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20derived%20moduli%20space%20of%20stable%20sheaves&rft.jtitle=arXiv.org&rft.au=Behrend,%20K&rft.date=2010-04-12&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1004.1884&rft_dat=%3Cproquest%3E2078628231%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a511-3010bddfd25bc954bc636fa132709a74d4eb7613969d5f3c9ae6ed01195f6b803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078628231&rft_id=info:pmid/&rfr_iscdi=true