Loading…
Preconditioning of weighted H(div)-norm and applications to numerical simulation of highly heterogeneous media
In this paper we propose and analyze a preconditioner for a system arising from a finite element approximation of second order elliptic problems describing processes in highly het- erogeneous media. Our approach uses the technique of multilevel methods and the recently proposed preconditioner based...
Saved in:
Published in: | arXiv.org 2016-01 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kraus, Johannes Lazarov, Raytcho Lymbery, Maria Margenov, Svetozar Zikatanov, Ludmil |
description | In this paper we propose and analyze a preconditioner for a system arising from a finite element approximation of second order elliptic problems describing processes in highly het- erogeneous media. Our approach uses the technique of multilevel methods and the recently proposed preconditioner based on additive Schur complement approximation by J. Kraus (see [8]). The main results are the design and a theoretical and numerical justification of an iterative method for such problems that is robust with respect to the contrast of the media, defined as the ratio between the maximum and minimum values of the coefficient (related to the permeability/conductivity). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078657987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078657987</sourcerecordid><originalsourceid>FETCH-proquest_journals_20786579873</originalsourceid><addsrcrecordid>eNqNjL0KwkAQhA9BUNR3WLDRIhAvxsRaFEsLezlya3Jy2Y33o_j2RvEBrAbm-2YGYiyzbJWUaylHYub9LU1TuSlknmdjQSeHFZM2wTAZqoGv8ERTNwE1HBfaPJYJsWtBkQbVddZU6qN6CAwUW3R9YcGbNtov-Bw0_d6-oMGAjmsk5OihRW3UVAyvynqc_XIi5of9eXdMOsf3iD5cbhwd9egi06Lc5MW2LLL_rDeZLkr5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078657987</pqid></control><display><type>article</type><title>Preconditioning of weighted H(div)-norm and applications to numerical simulation of highly heterogeneous media</title><source>Publicly Available Content Database</source><creator>Kraus, Johannes ; Lazarov, Raytcho ; Lymbery, Maria ; Margenov, Svetozar ; Zikatanov, Ludmil</creator><creatorcontrib>Kraus, Johannes ; Lazarov, Raytcho ; Lymbery, Maria ; Margenov, Svetozar ; Zikatanov, Ludmil</creatorcontrib><description>In this paper we propose and analyze a preconditioner for a system arising from a finite element approximation of second order elliptic problems describing processes in highly het- erogeneous media. Our approach uses the technique of multilevel methods and the recently proposed preconditioner based on additive Schur complement approximation by J. Kraus (see [8]). The main results are the design and a theoretical and numerical justification of an iterative method for such problems that is robust with respect to the contrast of the media, defined as the ratio between the maximum and minimum values of the coefficient (related to the permeability/conductivity).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Computer simulation ; Finite element method ; Iterative methods ; Mathematical analysis ; Preconditioning ; Robustness (mathematics)</subject><ispartof>arXiv.org, 2016-01</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078657987?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Kraus, Johannes</creatorcontrib><creatorcontrib>Lazarov, Raytcho</creatorcontrib><creatorcontrib>Lymbery, Maria</creatorcontrib><creatorcontrib>Margenov, Svetozar</creatorcontrib><creatorcontrib>Zikatanov, Ludmil</creatorcontrib><title>Preconditioning of weighted H(div)-norm and applications to numerical simulation of highly heterogeneous media</title><title>arXiv.org</title><description>In this paper we propose and analyze a preconditioner for a system arising from a finite element approximation of second order elliptic problems describing processes in highly het- erogeneous media. Our approach uses the technique of multilevel methods and the recently proposed preconditioner based on additive Schur complement approximation by J. Kraus (see [8]). The main results are the design and a theoretical and numerical justification of an iterative method for such problems that is robust with respect to the contrast of the media, defined as the ratio between the maximum and minimum values of the coefficient (related to the permeability/conductivity).</description><subject>Approximation</subject><subject>Computer simulation</subject><subject>Finite element method</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Preconditioning</subject><subject>Robustness (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjL0KwkAQhA9BUNR3WLDRIhAvxsRaFEsLezlya3Jy2Y33o_j2RvEBrAbm-2YGYiyzbJWUaylHYub9LU1TuSlknmdjQSeHFZM2wTAZqoGv8ERTNwE1HBfaPJYJsWtBkQbVddZU6qN6CAwUW3R9YcGbNtov-Bw0_d6-oMGAjmsk5OihRW3UVAyvynqc_XIi5of9eXdMOsf3iD5cbhwd9egi06Lc5MW2LLL_rDeZLkr5</recordid><startdate>20160113</startdate><enddate>20160113</enddate><creator>Kraus, Johannes</creator><creator>Lazarov, Raytcho</creator><creator>Lymbery, Maria</creator><creator>Margenov, Svetozar</creator><creator>Zikatanov, Ludmil</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160113</creationdate><title>Preconditioning of weighted H(div)-norm and applications to numerical simulation of highly heterogeneous media</title><author>Kraus, Johannes ; Lazarov, Raytcho ; Lymbery, Maria ; Margenov, Svetozar ; Zikatanov, Ludmil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20786579873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Computer simulation</topic><topic>Finite element method</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Preconditioning</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Kraus, Johannes</creatorcontrib><creatorcontrib>Lazarov, Raytcho</creatorcontrib><creatorcontrib>Lymbery, Maria</creatorcontrib><creatorcontrib>Margenov, Svetozar</creatorcontrib><creatorcontrib>Zikatanov, Ludmil</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kraus, Johannes</au><au>Lazarov, Raytcho</au><au>Lymbery, Maria</au><au>Margenov, Svetozar</au><au>Zikatanov, Ludmil</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Preconditioning of weighted H(div)-norm and applications to numerical simulation of highly heterogeneous media</atitle><jtitle>arXiv.org</jtitle><date>2016-01-13</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>In this paper we propose and analyze a preconditioner for a system arising from a finite element approximation of second order elliptic problems describing processes in highly het- erogeneous media. Our approach uses the technique of multilevel methods and the recently proposed preconditioner based on additive Schur complement approximation by J. Kraus (see [8]). The main results are the design and a theoretical and numerical justification of an iterative method for such problems that is robust with respect to the contrast of the media, defined as the ratio between the maximum and minimum values of the coefficient (related to the permeability/conductivity).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2078657987 |
source | Publicly Available Content Database |
subjects | Approximation Computer simulation Finite element method Iterative methods Mathematical analysis Preconditioning Robustness (mathematics) |
title | Preconditioning of weighted H(div)-norm and applications to numerical simulation of highly heterogeneous media |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Preconditioning%20of%20weighted%20H(div)-norm%20and%20applications%20to%20numerical%20simulation%20of%20highly%20heterogeneous%20media&rft.jtitle=arXiv.org&rft.au=Kraus,%20Johannes&rft.date=2016-01-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078657987%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20786579873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078657987&rft_id=info:pmid/&rfr_iscdi=true |