Loading…
Atomic transport at charged graphene: why hydrogen and oxygen are so different
Using density-functional calculations, we show that electron or hole doped graphene can strongly change the mobility of adsorbed atoms H and O. Interestingly, charge doping affects the diffusion of H and O in the opposite way, namely, electron doping increases/reduces while hole doping reduces/incre...
Saved in:
Published in: | arXiv.org 2016-08 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nguyen, Manh-Thuong Pham, Nam Phong |
description | Using density-functional calculations, we show that electron or hole doped graphene can strongly change the mobility of adsorbed atoms H and O. Interestingly, charge doping affects the diffusion of H and O in the opposite way, namely, electron doping increases/reduces while hole doping reduces/increases the diffusion barrier of H/O, respectively. Specifically, on neutral graphene the diffusion barriers of O and H are 0.74 and 1.01 eV, which are, upon a hole doping of \(+5.9\times10^{13}\) cm\(^{-2}\), 0.90 and 0.77 eV, and upon an electron doping of \(-5.9\times10^{13}\) cm\(^{-2}\), 0.38 and 1.36 eV, respectively. This means, within the harmonic transition state theory, at room temperature, the diffusion rate of O can be decreased or increased by 470 or 2.2\(\times 10^7\) times, and that of H can be increased or decreased by \(10^5\) or \(7\times 10^7\) times, by that hole or electron doping level. The difference between the H and O cases is interpreted in terms of the difference in geometric and bonding changes upon charge doping. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078917628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078917628</sourcerecordid><originalsourceid>FETCH-proquest_journals_20789176283</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6kCb2ozsRxZUr9yU0r02LJvUlRXt7RTyAqxmYmbFISJkm5UaIBYu97znnIi9ElsmIXfbB3bsaAinrB0cBVIDaKGpRQ0tqMGhxB08zgZk0uRYtKKvBvaavEoJ3oLumQUIbVmzeqJvH-MclW5-O18M5Gcg9RvSh6t1I9pMqwYtymxa5KOV_1xvnRz5e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078917628</pqid></control><display><type>article</type><title>Atomic transport at charged graphene: why hydrogen and oxygen are so different</title><source>Publicly Available Content Database</source><creator>Nguyen, Manh-Thuong ; Pham, Nam Phong</creator><creatorcontrib>Nguyen, Manh-Thuong ; Pham, Nam Phong</creatorcontrib><description>Using density-functional calculations, we show that electron or hole doped graphene can strongly change the mobility of adsorbed atoms H and O. Interestingly, charge doping affects the diffusion of H and O in the opposite way, namely, electron doping increases/reduces while hole doping reduces/increases the diffusion barrier of H/O, respectively. Specifically, on neutral graphene the diffusion barriers of O and H are 0.74 and 1.01 eV, which are, upon a hole doping of \(+5.9\times10^{13}\) cm\(^{-2}\), 0.90 and 0.77 eV, and upon an electron doping of \(-5.9\times10^{13}\) cm\(^{-2}\), 0.38 and 1.36 eV, respectively. This means, within the harmonic transition state theory, at room temperature, the diffusion rate of O can be decreased or increased by 470 or 2.2\(\times 10^7\) times, and that of H can be increased or decreased by \(10^5\) or \(7\times 10^7\) times, by that hole or electron doping level. The difference between the H and O cases is interpreted in terms of the difference in geometric and bonding changes upon charge doping.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adatoms ; Diffusion barriers ; Diffusion rate ; Doping ; Electrons ; Graphene</subject><ispartof>arXiv.org, 2016-08</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078917628?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Nguyen, Manh-Thuong</creatorcontrib><creatorcontrib>Pham, Nam Phong</creatorcontrib><title>Atomic transport at charged graphene: why hydrogen and oxygen are so different</title><title>arXiv.org</title><description>Using density-functional calculations, we show that electron or hole doped graphene can strongly change the mobility of adsorbed atoms H and O. Interestingly, charge doping affects the diffusion of H and O in the opposite way, namely, electron doping increases/reduces while hole doping reduces/increases the diffusion barrier of H/O, respectively. Specifically, on neutral graphene the diffusion barriers of O and H are 0.74 and 1.01 eV, which are, upon a hole doping of \(+5.9\times10^{13}\) cm\(^{-2}\), 0.90 and 0.77 eV, and upon an electron doping of \(-5.9\times10^{13}\) cm\(^{-2}\), 0.38 and 1.36 eV, respectively. This means, within the harmonic transition state theory, at room temperature, the diffusion rate of O can be decreased or increased by 470 or 2.2\(\times 10^7\) times, and that of H can be increased or decreased by \(10^5\) or \(7\times 10^7\) times, by that hole or electron doping level. The difference between the H and O cases is interpreted in terms of the difference in geometric and bonding changes upon charge doping.</description><subject>Adatoms</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>Doping</subject><subject>Electrons</subject><subject>Graphene</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6kCb2ozsRxZUr9yU0r02LJvUlRXt7RTyAqxmYmbFISJkm5UaIBYu97znnIi9ElsmIXfbB3bsaAinrB0cBVIDaKGpRQ0tqMGhxB08zgZk0uRYtKKvBvaavEoJ3oLumQUIbVmzeqJvH-MclW5-O18M5Gcg9RvSh6t1I9pMqwYtymxa5KOV_1xvnRz5e</recordid><startdate>20160803</startdate><enddate>20160803</enddate><creator>Nguyen, Manh-Thuong</creator><creator>Pham, Nam Phong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160803</creationdate><title>Atomic transport at charged graphene: why hydrogen and oxygen are so different</title><author>Nguyen, Manh-Thuong ; Pham, Nam Phong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20789176283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adatoms</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>Doping</topic><topic>Electrons</topic><topic>Graphene</topic><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Manh-Thuong</creatorcontrib><creatorcontrib>Pham, Nam Phong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Manh-Thuong</au><au>Pham, Nam Phong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Atomic transport at charged graphene: why hydrogen and oxygen are so different</atitle><jtitle>arXiv.org</jtitle><date>2016-08-03</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Using density-functional calculations, we show that electron or hole doped graphene can strongly change the mobility of adsorbed atoms H and O. Interestingly, charge doping affects the diffusion of H and O in the opposite way, namely, electron doping increases/reduces while hole doping reduces/increases the diffusion barrier of H/O, respectively. Specifically, on neutral graphene the diffusion barriers of O and H are 0.74 and 1.01 eV, which are, upon a hole doping of \(+5.9\times10^{13}\) cm\(^{-2}\), 0.90 and 0.77 eV, and upon an electron doping of \(-5.9\times10^{13}\) cm\(^{-2}\), 0.38 and 1.36 eV, respectively. This means, within the harmonic transition state theory, at room temperature, the diffusion rate of O can be decreased or increased by 470 or 2.2\(\times 10^7\) times, and that of H can be increased or decreased by \(10^5\) or \(7\times 10^7\) times, by that hole or electron doping level. The difference between the H and O cases is interpreted in terms of the difference in geometric and bonding changes upon charge doping.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2078917628 |
source | Publicly Available Content Database |
subjects | Adatoms Diffusion barriers Diffusion rate Doping Electrons Graphene |
title | Atomic transport at charged graphene: why hydrogen and oxygen are so different |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Atomic%20transport%20at%20charged%20graphene:%20why%20hydrogen%20and%20oxygen%20are%20so%20different&rft.jtitle=arXiv.org&rft.au=Nguyen,%20Manh-Thuong&rft.date=2016-08-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078917628%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20789176283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078917628&rft_id=info:pmid/&rfr_iscdi=true |