Loading…
Quandle coloring and cocycle invariants of composite knots and abelian extensions
Quandle colorings and cocycle invariants are studied for composite knots, and applied to chirality and abelian extensions. The square and granny knots, for example, can be distinguished by quandle colorings, so that a trefoil and its mirror can be distinguished by quandle invariants of composite kno...
Saved in:
Published in: | arXiv.org 2016-01 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Clark, W Edwin Saito, M Vendramin, L |
description | Quandle colorings and cocycle invariants are studied for composite knots, and applied to chirality and abelian extensions. The square and granny knots, for example, can be distinguished by quandle colorings, so that a trefoil and its mirror can be distinguished by quandle invariants of composite knots. We investigate this and related phenomena. Quandle cocycle invariants are studied in relation to the connected sum, and formulas are given for computing the cocycle invariant from the number of colorings of composite knots. Relations to corresponding abelian extensions of quandles are studied, and extensions are examined for the table of small connected quandles, called Rig quandles. Computer calculations are presented, and summaries of outputs are discussed. |
doi_str_mv | 10.48550/arxiv.1407.5803 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078954156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078954156</sourcerecordid><originalsourceid>FETCH-LOGICAL-a516-577455aec2196e4e602054ed658689911925c7bb1873cd3f70ff998ea92942aa3</originalsourceid><addsrcrecordid>eNotjUtLAzEUhYMgWGr3Lgdcz5jXzWMpxRcUpNB9yWTuSOqY1MlMqf_eiF0dzsfHOYTcMdpIA0Af3HgOp4ZJqhswVFyRBReC1UZyfkNWOR8opVxpDiAWZLudXewGrHwa0hjiR1VqKf7HFxjiyY3BxSlXqS_065hymLD6jKmgP9O1OBShwvOEMYcU8y257t2QcXXJJdk9P-3Wr_Xm_eVt_bipHTBVg9YSwKHnzCqUqCinILFTYJSxljHLweu2ZUYL34le07631qCz3ErunFiS-__Z45i-Z8zT_pDmMZbHPafaWJAMlPgFW8BQkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078954156</pqid></control><display><type>article</type><title>Quandle coloring and cocycle invariants of composite knots and abelian extensions</title><source>Publicly Available Content Database</source><creator>Clark, W Edwin ; Saito, M ; Vendramin, L</creator><creatorcontrib>Clark, W Edwin ; Saito, M ; Vendramin, L</creatorcontrib><description>Quandle colorings and cocycle invariants are studied for composite knots, and applied to chirality and abelian extensions. The square and granny knots, for example, can be distinguished by quandle colorings, so that a trefoil and its mirror can be distinguished by quandle invariants of composite knots. We investigate this and related phenomena. Quandle cocycle invariants are studied in relation to the connected sum, and formulas are given for computing the cocycle invariant from the number of colorings of composite knots. Relations to corresponding abelian extensions of quandles are studied, and extensions are examined for the table of small connected quandles, called Rig quandles. Computer calculations are presented, and summaries of outputs are discussed.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1407.5803</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chirality ; Coloring ; Invariants ; Knots</subject><ispartof>arXiv.org, 2016-01</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078954156?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Clark, W Edwin</creatorcontrib><creatorcontrib>Saito, M</creatorcontrib><creatorcontrib>Vendramin, L</creatorcontrib><title>Quandle coloring and cocycle invariants of composite knots and abelian extensions</title><title>arXiv.org</title><description>Quandle colorings and cocycle invariants are studied for composite knots, and applied to chirality and abelian extensions. The square and granny knots, for example, can be distinguished by quandle colorings, so that a trefoil and its mirror can be distinguished by quandle invariants of composite knots. We investigate this and related phenomena. Quandle cocycle invariants are studied in relation to the connected sum, and formulas are given for computing the cocycle invariant from the number of colorings of composite knots. Relations to corresponding abelian extensions of quandles are studied, and extensions are examined for the table of small connected quandles, called Rig quandles. Computer calculations are presented, and summaries of outputs are discussed.</description><subject>Chirality</subject><subject>Coloring</subject><subject>Invariants</subject><subject>Knots</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUtLAzEUhYMgWGr3Lgdcz5jXzWMpxRcUpNB9yWTuSOqY1MlMqf_eiF0dzsfHOYTcMdpIA0Af3HgOp4ZJqhswVFyRBReC1UZyfkNWOR8opVxpDiAWZLudXewGrHwa0hjiR1VqKf7HFxjiyY3BxSlXqS_065hymLD6jKmgP9O1OBShwvOEMYcU8y257t2QcXXJJdk9P-3Wr_Xm_eVt_bipHTBVg9YSwKHnzCqUqCinILFTYJSxljHLweu2ZUYL34le07631qCz3ErunFiS-__Z45i-Z8zT_pDmMZbHPafaWJAMlPgFW8BQkQ</recordid><startdate>20160124</startdate><enddate>20160124</enddate><creator>Clark, W Edwin</creator><creator>Saito, M</creator><creator>Vendramin, L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160124</creationdate><title>Quandle coloring and cocycle invariants of composite knots and abelian extensions</title><author>Clark, W Edwin ; Saito, M ; Vendramin, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a516-577455aec2196e4e602054ed658689911925c7bb1873cd3f70ff998ea92942aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chirality</topic><topic>Coloring</topic><topic>Invariants</topic><topic>Knots</topic><toplevel>online_resources</toplevel><creatorcontrib>Clark, W Edwin</creatorcontrib><creatorcontrib>Saito, M</creatorcontrib><creatorcontrib>Vendramin, L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, W Edwin</au><au>Saito, M</au><au>Vendramin, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quandle coloring and cocycle invariants of composite knots and abelian extensions</atitle><jtitle>arXiv.org</jtitle><date>2016-01-24</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Quandle colorings and cocycle invariants are studied for composite knots, and applied to chirality and abelian extensions. The square and granny knots, for example, can be distinguished by quandle colorings, so that a trefoil and its mirror can be distinguished by quandle invariants of composite knots. We investigate this and related phenomena. Quandle cocycle invariants are studied in relation to the connected sum, and formulas are given for computing the cocycle invariant from the number of colorings of composite knots. Relations to corresponding abelian extensions of quandles are studied, and extensions are examined for the table of small connected quandles, called Rig quandles. Computer calculations are presented, and summaries of outputs are discussed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1407.5803</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2078954156 |
source | Publicly Available Content Database |
subjects | Chirality Coloring Invariants Knots |
title | Quandle coloring and cocycle invariants of composite knots and abelian extensions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quandle%20coloring%20and%20cocycle%20invariants%20of%20composite%20knots%20and%20abelian%20extensions&rft.jtitle=arXiv.org&rft.au=Clark,%20W%20Edwin&rft.date=2016-01-24&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1407.5803&rft_dat=%3Cproquest%3E2078954156%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a516-577455aec2196e4e602054ed658689911925c7bb1873cd3f70ff998ea92942aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078954156&rft_id=info:pmid/&rfr_iscdi=true |