Loading…

Ehrhart polynomials with negative coefficients

It is shown that, for each \(d \geq 4\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that each of the coefficients of \(n, n^{2}, \ldots, n^{d-2}\) of its Ehrhart polynomial \(i(\mathcal{P},n)\) is negative. Moreover, it is also shown that for each \(d \geq 3\) a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-05
Main Authors: Hibi, Takayuki, Higashitani, Akihiro, Tsuchiya, Akiyoshi, Yoshida, Koutarou
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hibi, Takayuki
Higashitani, Akihiro
Tsuchiya, Akiyoshi
Yoshida, Koutarou
description It is shown that, for each \(d \geq 4\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that each of the coefficients of \(n, n^{2}, \ldots, n^{d-2}\) of its Ehrhart polynomial \(i(\mathcal{P},n)\) is negative. Moreover, it is also shown that for each \(d \geq 3\) and \(1 \leq k \leq d-2\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that the coefficient of \(n^k\) of the Ehrhart polynomial \(i(\mathcal{P},n)\) of \(\mathcal{P}\) is negative and all its remaining coefficients are positive. Finally, we consider all the possible sign patterns of the coefficients of the Ehrhart polynomials of low dimensional integral convex polytopes.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079050900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079050900</sourcerecordid><originalsourceid>FETCH-proquest_journals_20790509003</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc80oykgsKlEoyM-pzMvPzUzMKVYozyzJUMhLTU8sySxLVUjOT01Ly0zOTM0rKeZhYE0DqkjlhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc0sDUwNLAwNj4lQBAEQ4Mvk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079050900</pqid></control><display><type>article</type><title>Ehrhart polynomials with negative coefficients</title><source>Publicly Available Content (ProQuest)</source><creator>Hibi, Takayuki ; Higashitani, Akihiro ; Tsuchiya, Akiyoshi ; Yoshida, Koutarou</creator><creatorcontrib>Hibi, Takayuki ; Higashitani, Akihiro ; Tsuchiya, Akiyoshi ; Yoshida, Koutarou</creatorcontrib><description>It is shown that, for each \(d \geq 4\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that each of the coefficients of \(n, n^{2}, \ldots, n^{d-2}\) of its Ehrhart polynomial \(i(\mathcal{P},n)\) is negative. Moreover, it is also shown that for each \(d \geq 3\) and \(1 \leq k \leq d-2\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that the coefficient of \(n^k\) of the Ehrhart polynomial \(i(\mathcal{P},n)\) of \(\mathcal{P}\) is negative and all its remaining coefficients are positive. Finally, we consider all the possible sign patterns of the coefficients of the Ehrhart polynomials of low dimensional integral convex polytopes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coefficients ; Integrals ; Polynomials ; Polytopes</subject><ispartof>arXiv.org, 2016-05</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2079050900?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Hibi, Takayuki</creatorcontrib><creatorcontrib>Higashitani, Akihiro</creatorcontrib><creatorcontrib>Tsuchiya, Akiyoshi</creatorcontrib><creatorcontrib>Yoshida, Koutarou</creatorcontrib><title>Ehrhart polynomials with negative coefficients</title><title>arXiv.org</title><description>It is shown that, for each \(d \geq 4\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that each of the coefficients of \(n, n^{2}, \ldots, n^{d-2}\) of its Ehrhart polynomial \(i(\mathcal{P},n)\) is negative. Moreover, it is also shown that for each \(d \geq 3\) and \(1 \leq k \leq d-2\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that the coefficient of \(n^k\) of the Ehrhart polynomial \(i(\mathcal{P},n)\) of \(\mathcal{P}\) is negative and all its remaining coefficients are positive. Finally, we consider all the possible sign patterns of the coefficients of the Ehrhart polynomials of low dimensional integral convex polytopes.</description><subject>Coefficients</subject><subject>Integrals</subject><subject>Polynomials</subject><subject>Polytopes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc80oykgsKlEoyM-pzMvPzUzMKVYozyzJUMhLTU8sySxLVUjOT01Ly0zOTM0rKeZhYE0DqkjlhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc0sDUwNLAwNj4lQBAEQ4Mvk</recordid><startdate>20160502</startdate><enddate>20160502</enddate><creator>Hibi, Takayuki</creator><creator>Higashitani, Akihiro</creator><creator>Tsuchiya, Akiyoshi</creator><creator>Yoshida, Koutarou</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160502</creationdate><title>Ehrhart polynomials with negative coefficients</title><author>Hibi, Takayuki ; Higashitani, Akihiro ; Tsuchiya, Akiyoshi ; Yoshida, Koutarou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20790509003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Coefficients</topic><topic>Integrals</topic><topic>Polynomials</topic><topic>Polytopes</topic><toplevel>online_resources</toplevel><creatorcontrib>Hibi, Takayuki</creatorcontrib><creatorcontrib>Higashitani, Akihiro</creatorcontrib><creatorcontrib>Tsuchiya, Akiyoshi</creatorcontrib><creatorcontrib>Yoshida, Koutarou</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hibi, Takayuki</au><au>Higashitani, Akihiro</au><au>Tsuchiya, Akiyoshi</au><au>Yoshida, Koutarou</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Ehrhart polynomials with negative coefficients</atitle><jtitle>arXiv.org</jtitle><date>2016-05-02</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>It is shown that, for each \(d \geq 4\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that each of the coefficients of \(n, n^{2}, \ldots, n^{d-2}\) of its Ehrhart polynomial \(i(\mathcal{P},n)\) is negative. Moreover, it is also shown that for each \(d \geq 3\) and \(1 \leq k \leq d-2\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that the coefficient of \(n^k\) of the Ehrhart polynomial \(i(\mathcal{P},n)\) of \(\mathcal{P}\) is negative and all its remaining coefficients are positive. Finally, we consider all the possible sign patterns of the coefficients of the Ehrhart polynomials of low dimensional integral convex polytopes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2079050900
source Publicly Available Content (ProQuest)
subjects Coefficients
Integrals
Polynomials
Polytopes
title Ehrhart polynomials with negative coefficients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Ehrhart%20polynomials%20with%20negative%20coefficients&rft.jtitle=arXiv.org&rft.au=Hibi,%20Takayuki&rft.date=2016-05-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079050900%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20790509003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2079050900&rft_id=info:pmid/&rfr_iscdi=true