Loading…
Ehrhart polynomials with negative coefficients
It is shown that, for each \(d \geq 4\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that each of the coefficients of \(n, n^{2}, \ldots, n^{d-2}\) of its Ehrhart polynomial \(i(\mathcal{P},n)\) is negative. Moreover, it is also shown that for each \(d \geq 3\) a...
Saved in:
Published in: | arXiv.org 2016-05 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hibi, Takayuki Higashitani, Akihiro Tsuchiya, Akiyoshi Yoshida, Koutarou |
description | It is shown that, for each \(d \geq 4\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that each of the coefficients of \(n, n^{2}, \ldots, n^{d-2}\) of its Ehrhart polynomial \(i(\mathcal{P},n)\) is negative. Moreover, it is also shown that for each \(d \geq 3\) and \(1 \leq k \leq d-2\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that the coefficient of \(n^k\) of the Ehrhart polynomial \(i(\mathcal{P},n)\) of \(\mathcal{P}\) is negative and all its remaining coefficients are positive. Finally, we consider all the possible sign patterns of the coefficients of the Ehrhart polynomials of low dimensional integral convex polytopes. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079050900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079050900</sourcerecordid><originalsourceid>FETCH-proquest_journals_20790509003</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc80oykgsKlEoyM-pzMvPzUzMKVYozyzJUMhLTU8sySxLVUjOT01Ly0zOTM0rKeZhYE0DqkjlhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc0sDUwNLAwNj4lQBAEQ4Mvk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079050900</pqid></control><display><type>article</type><title>Ehrhart polynomials with negative coefficients</title><source>Publicly Available Content (ProQuest)</source><creator>Hibi, Takayuki ; Higashitani, Akihiro ; Tsuchiya, Akiyoshi ; Yoshida, Koutarou</creator><creatorcontrib>Hibi, Takayuki ; Higashitani, Akihiro ; Tsuchiya, Akiyoshi ; Yoshida, Koutarou</creatorcontrib><description>It is shown that, for each \(d \geq 4\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that each of the coefficients of \(n, n^{2}, \ldots, n^{d-2}\) of its Ehrhart polynomial \(i(\mathcal{P},n)\) is negative. Moreover, it is also shown that for each \(d \geq 3\) and \(1 \leq k \leq d-2\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that the coefficient of \(n^k\) of the Ehrhart polynomial \(i(\mathcal{P},n)\) of \(\mathcal{P}\) is negative and all its remaining coefficients are positive. Finally, we consider all the possible sign patterns of the coefficients of the Ehrhart polynomials of low dimensional integral convex polytopes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coefficients ; Integrals ; Polynomials ; Polytopes</subject><ispartof>arXiv.org, 2016-05</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2079050900?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Hibi, Takayuki</creatorcontrib><creatorcontrib>Higashitani, Akihiro</creatorcontrib><creatorcontrib>Tsuchiya, Akiyoshi</creatorcontrib><creatorcontrib>Yoshida, Koutarou</creatorcontrib><title>Ehrhart polynomials with negative coefficients</title><title>arXiv.org</title><description>It is shown that, for each \(d \geq 4\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that each of the coefficients of \(n, n^{2}, \ldots, n^{d-2}\) of its Ehrhart polynomial \(i(\mathcal{P},n)\) is negative. Moreover, it is also shown that for each \(d \geq 3\) and \(1 \leq k \leq d-2\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that the coefficient of \(n^k\) of the Ehrhart polynomial \(i(\mathcal{P},n)\) of \(\mathcal{P}\) is negative and all its remaining coefficients are positive. Finally, we consider all the possible sign patterns of the coefficients of the Ehrhart polynomials of low dimensional integral convex polytopes.</description><subject>Coefficients</subject><subject>Integrals</subject><subject>Polynomials</subject><subject>Polytopes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc80oykgsKlEoyM-pzMvPzUzMKVYozyzJUMhLTU8sySxLVUjOT01Ly0zOTM0rKeZhYE0DqkjlhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc0sDUwNLAwNj4lQBAEQ4Mvk</recordid><startdate>20160502</startdate><enddate>20160502</enddate><creator>Hibi, Takayuki</creator><creator>Higashitani, Akihiro</creator><creator>Tsuchiya, Akiyoshi</creator><creator>Yoshida, Koutarou</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160502</creationdate><title>Ehrhart polynomials with negative coefficients</title><author>Hibi, Takayuki ; Higashitani, Akihiro ; Tsuchiya, Akiyoshi ; Yoshida, Koutarou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20790509003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Coefficients</topic><topic>Integrals</topic><topic>Polynomials</topic><topic>Polytopes</topic><toplevel>online_resources</toplevel><creatorcontrib>Hibi, Takayuki</creatorcontrib><creatorcontrib>Higashitani, Akihiro</creatorcontrib><creatorcontrib>Tsuchiya, Akiyoshi</creatorcontrib><creatorcontrib>Yoshida, Koutarou</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hibi, Takayuki</au><au>Higashitani, Akihiro</au><au>Tsuchiya, Akiyoshi</au><au>Yoshida, Koutarou</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Ehrhart polynomials with negative coefficients</atitle><jtitle>arXiv.org</jtitle><date>2016-05-02</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>It is shown that, for each \(d \geq 4\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that each of the coefficients of \(n, n^{2}, \ldots, n^{d-2}\) of its Ehrhart polynomial \(i(\mathcal{P},n)\) is negative. Moreover, it is also shown that for each \(d \geq 3\) and \(1 \leq k \leq d-2\), there exists an integral convex polytope \(\mathcal{P}\) of dimension \(d\) such that the coefficient of \(n^k\) of the Ehrhart polynomial \(i(\mathcal{P},n)\) of \(\mathcal{P}\) is negative and all its remaining coefficients are positive. Finally, we consider all the possible sign patterns of the coefficients of the Ehrhart polynomials of low dimensional integral convex polytopes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2079050900 |
source | Publicly Available Content (ProQuest) |
subjects | Coefficients Integrals Polynomials Polytopes |
title | Ehrhart polynomials with negative coefficients |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Ehrhart%20polynomials%20with%20negative%20coefficients&rft.jtitle=arXiv.org&rft.au=Hibi,%20Takayuki&rft.date=2016-05-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079050900%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20790509003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2079050900&rft_id=info:pmid/&rfr_iscdi=true |