Loading…

Computing integral bases via localization and Hensel lifting

We present a new algorithm for computing integral bases in algebraic function fields of one variable, or equivalently for constructing the normalization of a plane curve. Our basic strategy makes use of the concepts of localization and completion, together with the Chinese remainder theorem, to redu...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-03
Main Authors: Boehm, Janko, Decker, Wolfram, Laplagne, Santiago, Pfister, Gerhard
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Boehm, Janko
Decker, Wolfram
Laplagne, Santiago
Pfister, Gerhard
description We present a new algorithm for computing integral bases in algebraic function fields of one variable, or equivalently for constructing the normalization of a plane curve. Our basic strategy makes use of the concepts of localization and completion, together with the Chinese remainder theorem, to reduce the problem to the task of finding integral bases for the branches of each singularity of the curve. To solve the latter task, in turn, we work with suitably truncated Puiseux expansions. In contrast to van Hoeij's algorithm, which also relies on Puiseux expansions (but pursues a different strategy), we use Hensel's lemma as a key ingredient. This allows us at some steps of the algorithm to compute factors corresponding to conjugacy classes of Puiseux expansions, without actually computing the individual expansions. In this way, we make substantially less use of the Newton-Puiseux algorithm. In addition, our algorithm is inherently parallel. As a result, it outperforms in most cases any other algorithm known to us by far. Typical applications are the computation of adjoint ideals and, based on this, the computation of Riemann-Roch spaces and the parametrization of rational curves.
doi_str_mv 10.48550/arxiv.1505.05054
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079091050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079091050</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-f854cd98fc4b3fc4d579716faf34b83edb5f6ee8d518ca5ec11051a83232db823</originalsourceid><addsrcrecordid>eNotjU1LxDAURYMgOIzzA9wFXLe-fLw2BTdS1BEG3Mx-eG2SIUNMx6YdxF9vRTfnbu65l7E7AaU2iPBA41e4lAIBS1igr9hKKiUKo6W8YZucTwAgq1oiqhV7bIeP8zyFdOQhTe44UuQdZZf5JRCPQ08xfNMUhsQpWb51KbvIY_C_yi279hSz2_znmu1fnvfttti9v761T7uCUELhDereNsb3ulMLLNZNLSpPXunOKGc79JVzxqIwPaHrhQAUZJRU0nZGqjW7_5s9j8Pn7PJ0OA3zmJbHg4S6gWbpg_oBYrJJ4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079091050</pqid></control><display><type>article</type><title>Computing integral bases via localization and Hensel lifting</title><source>Publicly Available Content (ProQuest)</source><creator>Boehm, Janko ; Decker, Wolfram ; Laplagne, Santiago ; Pfister, Gerhard</creator><creatorcontrib>Boehm, Janko ; Decker, Wolfram ; Laplagne, Santiago ; Pfister, Gerhard</creatorcontrib><description>We present a new algorithm for computing integral bases in algebraic function fields of one variable, or equivalently for constructing the normalization of a plane curve. Our basic strategy makes use of the concepts of localization and completion, together with the Chinese remainder theorem, to reduce the problem to the task of finding integral bases for the branches of each singularity of the curve. To solve the latter task, in turn, we work with suitably truncated Puiseux expansions. In contrast to van Hoeij's algorithm, which also relies on Puiseux expansions (but pursues a different strategy), we use Hensel's lemma as a key ingredient. This allows us at some steps of the algorithm to compute factors corresponding to conjugacy classes of Puiseux expansions, without actually computing the individual expansions. In this way, we make substantially less use of the Newton-Puiseux algorithm. In addition, our algorithm is inherently parallel. As a result, it outperforms in most cases any other algorithm known to us by far. Typical applications are the computation of adjoint ideals and, based on this, the computation of Riemann-Roch spaces and the parametrization of rational curves.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1505.05054</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computation ; Curves ; Integrals ; Localization ; Parameterization ; Singularities</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2079091050?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25744,27916,37003,44581</link.rule.ids></links><search><creatorcontrib>Boehm, Janko</creatorcontrib><creatorcontrib>Decker, Wolfram</creatorcontrib><creatorcontrib>Laplagne, Santiago</creatorcontrib><creatorcontrib>Pfister, Gerhard</creatorcontrib><title>Computing integral bases via localization and Hensel lifting</title><title>arXiv.org</title><description>We present a new algorithm for computing integral bases in algebraic function fields of one variable, or equivalently for constructing the normalization of a plane curve. Our basic strategy makes use of the concepts of localization and completion, together with the Chinese remainder theorem, to reduce the problem to the task of finding integral bases for the branches of each singularity of the curve. To solve the latter task, in turn, we work with suitably truncated Puiseux expansions. In contrast to van Hoeij's algorithm, which also relies on Puiseux expansions (but pursues a different strategy), we use Hensel's lemma as a key ingredient. This allows us at some steps of the algorithm to compute factors corresponding to conjugacy classes of Puiseux expansions, without actually computing the individual expansions. In this way, we make substantially less use of the Newton-Puiseux algorithm. In addition, our algorithm is inherently parallel. As a result, it outperforms in most cases any other algorithm known to us by far. Typical applications are the computation of adjoint ideals and, based on this, the computation of Riemann-Roch spaces and the parametrization of rational curves.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Curves</subject><subject>Integrals</subject><subject>Localization</subject><subject>Parameterization</subject><subject>Singularities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LxDAURYMgOIzzA9wFXLe-fLw2BTdS1BEG3Mx-eG2SIUNMx6YdxF9vRTfnbu65l7E7AaU2iPBA41e4lAIBS1igr9hKKiUKo6W8YZucTwAgq1oiqhV7bIeP8zyFdOQhTe44UuQdZZf5JRCPQ08xfNMUhsQpWb51KbvIY_C_yi279hSz2_znmu1fnvfttti9v761T7uCUELhDereNsb3ulMLLNZNLSpPXunOKGc79JVzxqIwPaHrhQAUZJRU0nZGqjW7_5s9j8Pn7PJ0OA3zmJbHg4S6gWbpg_oBYrJJ4Q</recordid><startdate>20210309</startdate><enddate>20210309</enddate><creator>Boehm, Janko</creator><creator>Decker, Wolfram</creator><creator>Laplagne, Santiago</creator><creator>Pfister, Gerhard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210309</creationdate><title>Computing integral bases via localization and Hensel lifting</title><author>Boehm, Janko ; Decker, Wolfram ; Laplagne, Santiago ; Pfister, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-f854cd98fc4b3fc4d579716faf34b83edb5f6ee8d518ca5ec11051a83232db823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Curves</topic><topic>Integrals</topic><topic>Localization</topic><topic>Parameterization</topic><topic>Singularities</topic><toplevel>online_resources</toplevel><creatorcontrib>Boehm, Janko</creatorcontrib><creatorcontrib>Decker, Wolfram</creatorcontrib><creatorcontrib>Laplagne, Santiago</creatorcontrib><creatorcontrib>Pfister, Gerhard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boehm, Janko</au><au>Decker, Wolfram</au><au>Laplagne, Santiago</au><au>Pfister, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing integral bases via localization and Hensel lifting</atitle><jtitle>arXiv.org</jtitle><date>2021-03-09</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We present a new algorithm for computing integral bases in algebraic function fields of one variable, or equivalently for constructing the normalization of a plane curve. Our basic strategy makes use of the concepts of localization and completion, together with the Chinese remainder theorem, to reduce the problem to the task of finding integral bases for the branches of each singularity of the curve. To solve the latter task, in turn, we work with suitably truncated Puiseux expansions. In contrast to van Hoeij's algorithm, which also relies on Puiseux expansions (but pursues a different strategy), we use Hensel's lemma as a key ingredient. This allows us at some steps of the algorithm to compute factors corresponding to conjugacy classes of Puiseux expansions, without actually computing the individual expansions. In this way, we make substantially less use of the Newton-Puiseux algorithm. In addition, our algorithm is inherently parallel. As a result, it outperforms in most cases any other algorithm known to us by far. Typical applications are the computation of adjoint ideals and, based on this, the computation of Riemann-Roch spaces and the parametrization of rational curves.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1505.05054</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2079091050
source Publicly Available Content (ProQuest)
subjects Algorithms
Computation
Curves
Integrals
Localization
Parameterization
Singularities
title Computing integral bases via localization and Hensel lifting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20integral%20bases%20via%20localization%20and%20Hensel%20lifting&rft.jtitle=arXiv.org&rft.au=Boehm,%20Janko&rft.date=2021-03-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1505.05054&rft_dat=%3Cproquest%3E2079091050%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-f854cd98fc4b3fc4d579716faf34b83edb5f6ee8d518ca5ec11051a83232db823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2079091050&rft_id=info:pmid/&rfr_iscdi=true