Loading…
Computing integral bases via localization and Hensel lifting
We present a new algorithm for computing integral bases in algebraic function fields of one variable, or equivalently for constructing the normalization of a plane curve. Our basic strategy makes use of the concepts of localization and completion, together with the Chinese remainder theorem, to redu...
Saved in:
Published in: | arXiv.org 2021-03 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Boehm, Janko Decker, Wolfram Laplagne, Santiago Pfister, Gerhard |
description | We present a new algorithm for computing integral bases in algebraic function fields of one variable, or equivalently for constructing the normalization of a plane curve. Our basic strategy makes use of the concepts of localization and completion, together with the Chinese remainder theorem, to reduce the problem to the task of finding integral bases for the branches of each singularity of the curve. To solve the latter task, in turn, we work with suitably truncated Puiseux expansions. In contrast to van Hoeij's algorithm, which also relies on Puiseux expansions (but pursues a different strategy), we use Hensel's lemma as a key ingredient. This allows us at some steps of the algorithm to compute factors corresponding to conjugacy classes of Puiseux expansions, without actually computing the individual expansions. In this way, we make substantially less use of the Newton-Puiseux algorithm. In addition, our algorithm is inherently parallel. As a result, it outperforms in most cases any other algorithm known to us by far. Typical applications are the computation of adjoint ideals and, based on this, the computation of Riemann-Roch spaces and the parametrization of rational curves. |
doi_str_mv | 10.48550/arxiv.1505.05054 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079091050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079091050</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-f854cd98fc4b3fc4d579716faf34b83edb5f6ee8d518ca5ec11051a83232db823</originalsourceid><addsrcrecordid>eNotjU1LxDAURYMgOIzzA9wFXLe-fLw2BTdS1BEG3Mx-eG2SIUNMx6YdxF9vRTfnbu65l7E7AaU2iPBA41e4lAIBS1igr9hKKiUKo6W8YZucTwAgq1oiqhV7bIeP8zyFdOQhTe44UuQdZZf5JRCPQ08xfNMUhsQpWb51KbvIY_C_yi279hSz2_znmu1fnvfttti9v761T7uCUELhDereNsb3ulMLLNZNLSpPXunOKGc79JVzxqIwPaHrhQAUZJRU0nZGqjW7_5s9j8Pn7PJ0OA3zmJbHg4S6gWbpg_oBYrJJ4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079091050</pqid></control><display><type>article</type><title>Computing integral bases via localization and Hensel lifting</title><source>Publicly Available Content (ProQuest)</source><creator>Boehm, Janko ; Decker, Wolfram ; Laplagne, Santiago ; Pfister, Gerhard</creator><creatorcontrib>Boehm, Janko ; Decker, Wolfram ; Laplagne, Santiago ; Pfister, Gerhard</creatorcontrib><description>We present a new algorithm for computing integral bases in algebraic function fields of one variable, or equivalently for constructing the normalization of a plane curve. Our basic strategy makes use of the concepts of localization and completion, together with the Chinese remainder theorem, to reduce the problem to the task of finding integral bases for the branches of each singularity of the curve. To solve the latter task, in turn, we work with suitably truncated Puiseux expansions. In contrast to van Hoeij's algorithm, which also relies on Puiseux expansions (but pursues a different strategy), we use Hensel's lemma as a key ingredient. This allows us at some steps of the algorithm to compute factors corresponding to conjugacy classes of Puiseux expansions, without actually computing the individual expansions. In this way, we make substantially less use of the Newton-Puiseux algorithm. In addition, our algorithm is inherently parallel. As a result, it outperforms in most cases any other algorithm known to us by far. Typical applications are the computation of adjoint ideals and, based on this, the computation of Riemann-Roch spaces and the parametrization of rational curves.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1505.05054</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computation ; Curves ; Integrals ; Localization ; Parameterization ; Singularities</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2079091050?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25744,27916,37003,44581</link.rule.ids></links><search><creatorcontrib>Boehm, Janko</creatorcontrib><creatorcontrib>Decker, Wolfram</creatorcontrib><creatorcontrib>Laplagne, Santiago</creatorcontrib><creatorcontrib>Pfister, Gerhard</creatorcontrib><title>Computing integral bases via localization and Hensel lifting</title><title>arXiv.org</title><description>We present a new algorithm for computing integral bases in algebraic function fields of one variable, or equivalently for constructing the normalization of a plane curve. Our basic strategy makes use of the concepts of localization and completion, together with the Chinese remainder theorem, to reduce the problem to the task of finding integral bases for the branches of each singularity of the curve. To solve the latter task, in turn, we work with suitably truncated Puiseux expansions. In contrast to van Hoeij's algorithm, which also relies on Puiseux expansions (but pursues a different strategy), we use Hensel's lemma as a key ingredient. This allows us at some steps of the algorithm to compute factors corresponding to conjugacy classes of Puiseux expansions, without actually computing the individual expansions. In this way, we make substantially less use of the Newton-Puiseux algorithm. In addition, our algorithm is inherently parallel. As a result, it outperforms in most cases any other algorithm known to us by far. Typical applications are the computation of adjoint ideals and, based on this, the computation of Riemann-Roch spaces and the parametrization of rational curves.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Curves</subject><subject>Integrals</subject><subject>Localization</subject><subject>Parameterization</subject><subject>Singularities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LxDAURYMgOIzzA9wFXLe-fLw2BTdS1BEG3Mx-eG2SIUNMx6YdxF9vRTfnbu65l7E7AaU2iPBA41e4lAIBS1igr9hKKiUKo6W8YZucTwAgq1oiqhV7bIeP8zyFdOQhTe44UuQdZZf5JRCPQ08xfNMUhsQpWb51KbvIY_C_yi279hSz2_znmu1fnvfttti9v761T7uCUELhDereNsb3ulMLLNZNLSpPXunOKGc79JVzxqIwPaHrhQAUZJRU0nZGqjW7_5s9j8Pn7PJ0OA3zmJbHg4S6gWbpg_oBYrJJ4Q</recordid><startdate>20210309</startdate><enddate>20210309</enddate><creator>Boehm, Janko</creator><creator>Decker, Wolfram</creator><creator>Laplagne, Santiago</creator><creator>Pfister, Gerhard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210309</creationdate><title>Computing integral bases via localization and Hensel lifting</title><author>Boehm, Janko ; Decker, Wolfram ; Laplagne, Santiago ; Pfister, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-f854cd98fc4b3fc4d579716faf34b83edb5f6ee8d518ca5ec11051a83232db823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Curves</topic><topic>Integrals</topic><topic>Localization</topic><topic>Parameterization</topic><topic>Singularities</topic><toplevel>online_resources</toplevel><creatorcontrib>Boehm, Janko</creatorcontrib><creatorcontrib>Decker, Wolfram</creatorcontrib><creatorcontrib>Laplagne, Santiago</creatorcontrib><creatorcontrib>Pfister, Gerhard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boehm, Janko</au><au>Decker, Wolfram</au><au>Laplagne, Santiago</au><au>Pfister, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing integral bases via localization and Hensel lifting</atitle><jtitle>arXiv.org</jtitle><date>2021-03-09</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We present a new algorithm for computing integral bases in algebraic function fields of one variable, or equivalently for constructing the normalization of a plane curve. Our basic strategy makes use of the concepts of localization and completion, together with the Chinese remainder theorem, to reduce the problem to the task of finding integral bases for the branches of each singularity of the curve. To solve the latter task, in turn, we work with suitably truncated Puiseux expansions. In contrast to van Hoeij's algorithm, which also relies on Puiseux expansions (but pursues a different strategy), we use Hensel's lemma as a key ingredient. This allows us at some steps of the algorithm to compute factors corresponding to conjugacy classes of Puiseux expansions, without actually computing the individual expansions. In this way, we make substantially less use of the Newton-Puiseux algorithm. In addition, our algorithm is inherently parallel. As a result, it outperforms in most cases any other algorithm known to us by far. Typical applications are the computation of adjoint ideals and, based on this, the computation of Riemann-Roch spaces and the parametrization of rational curves.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1505.05054</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2079091050 |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Computation Curves Integrals Localization Parameterization Singularities |
title | Computing integral bases via localization and Hensel lifting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20integral%20bases%20via%20localization%20and%20Hensel%20lifting&rft.jtitle=arXiv.org&rft.au=Boehm,%20Janko&rft.date=2021-03-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1505.05054&rft_dat=%3Cproquest%3E2079091050%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-f854cd98fc4b3fc4d579716faf34b83edb5f6ee8d518ca5ec11051a83232db823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2079091050&rft_id=info:pmid/&rfr_iscdi=true |