Loading…
Dual Immaculate Quasisymmetric Functions Expand Positively into Young Quasisymmetric Schur Functions
We describe a combinatorial formula for the coefficients when the dual immaculate quasisymmetric functions are decomposed into Young quasisymmetric Schur functions. We prove this using an analogue of Schensted insertion. Using this result, we give necessary and sufficient conditions for a dual immac...
Saved in:
Published in: | arXiv.org 2016-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Allen, Edward E Hallam, Joshua Mason, Sarah K |
description | We describe a combinatorial formula for the coefficients when the dual immaculate quasisymmetric functions are decomposed into Young quasisymmetric Schur functions. We prove this using an analogue of Schensted insertion. Using this result, we give necessary and sufficient conditions for a dual immaculate quasisymmetric function to be symmetric. Moreover, we show that the product of a Schur function and a dual immaculate quasisymmetric function expands positively in the Young quasisymmetric Schur basis. We also discuss the decomposition of the Young noncommutative Schur functions into the immaculate functions. Finally, we provide a Remmel-Whitney-style rule to generate the coefficients of the decomposition of the dual immaculates into the Young quasisymmetric Schurs algorithmically and an analogous rule for the decomposition of the dual bases. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079149232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079149232</sourcerecordid><originalsourceid>FETCH-proquest_journals_20791492323</originalsourceid><addsrcrecordid>eNqNi70KwjAYAIMgWLTvEHAupF9aa2dt0U3RxamENGpKk9T8iL69DoLg5HTD3Y1QBJSmyTIDmKDYuY4QAosC8pxGqF0H1uOtUoyHnnmB94E56Z5KCW8lx3XQ3EujHa4eA9Mt3hknvbyL_oml9gafTNCX3-vAr8F-3xkan1nvRPzhFM3r6rjaJIM1tyCcbzoTrH6rBkhRplkJFOh_1QvE-Uea</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079149232</pqid></control><display><type>article</type><title>Dual Immaculate Quasisymmetric Functions Expand Positively into Young Quasisymmetric Schur Functions</title><source>Publicly Available Content (ProQuest)</source><creator>Allen, Edward E ; Hallam, Joshua ; Mason, Sarah K</creator><creatorcontrib>Allen, Edward E ; Hallam, Joshua ; Mason, Sarah K</creatorcontrib><description>We describe a combinatorial formula for the coefficients when the dual immaculate quasisymmetric functions are decomposed into Young quasisymmetric Schur functions. We prove this using an analogue of Schensted insertion. Using this result, we give necessary and sufficient conditions for a dual immaculate quasisymmetric function to be symmetric. Moreover, we show that the product of a Schur function and a dual immaculate quasisymmetric function expands positively in the Young quasisymmetric Schur basis. We also discuss the decomposition of the Young noncommutative Schur functions into the immaculate functions. Finally, we provide a Remmel-Whitney-style rule to generate the coefficients of the decomposition of the dual immaculates into the Young quasisymmetric Schurs algorithmically and an analogous rule for the decomposition of the dual bases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Decomposition</subject><ispartof>arXiv.org, 2016-06</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2079149232?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25744,37003,44581</link.rule.ids></links><search><creatorcontrib>Allen, Edward E</creatorcontrib><creatorcontrib>Hallam, Joshua</creatorcontrib><creatorcontrib>Mason, Sarah K</creatorcontrib><title>Dual Immaculate Quasisymmetric Functions Expand Positively into Young Quasisymmetric Schur Functions</title><title>arXiv.org</title><description>We describe a combinatorial formula for the coefficients when the dual immaculate quasisymmetric functions are decomposed into Young quasisymmetric Schur functions. We prove this using an analogue of Schensted insertion. Using this result, we give necessary and sufficient conditions for a dual immaculate quasisymmetric function to be symmetric. Moreover, we show that the product of a Schur function and a dual immaculate quasisymmetric function expands positively in the Young quasisymmetric Schur basis. We also discuss the decomposition of the Young noncommutative Schur functions into the immaculate functions. Finally, we provide a Remmel-Whitney-style rule to generate the coefficients of the decomposition of the dual immaculates into the Young quasisymmetric Schurs algorithmically and an analogous rule for the decomposition of the dual bases.</description><subject>Combinatorial analysis</subject><subject>Decomposition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi70KwjAYAIMgWLTvEHAupF9aa2dt0U3RxamENGpKk9T8iL69DoLg5HTD3Y1QBJSmyTIDmKDYuY4QAosC8pxGqF0H1uOtUoyHnnmB94E56Z5KCW8lx3XQ3EujHa4eA9Mt3hknvbyL_oml9gafTNCX3-vAr8F-3xkan1nvRPzhFM3r6rjaJIM1tyCcbzoTrH6rBkhRplkJFOh_1QvE-Uea</recordid><startdate>20160611</startdate><enddate>20160611</enddate><creator>Allen, Edward E</creator><creator>Hallam, Joshua</creator><creator>Mason, Sarah K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160611</creationdate><title>Dual Immaculate Quasisymmetric Functions Expand Positively into Young Quasisymmetric Schur Functions</title><author>Allen, Edward E ; Hallam, Joshua ; Mason, Sarah K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20791492323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Combinatorial analysis</topic><topic>Decomposition</topic><toplevel>online_resources</toplevel><creatorcontrib>Allen, Edward E</creatorcontrib><creatorcontrib>Hallam, Joshua</creatorcontrib><creatorcontrib>Mason, Sarah K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allen, Edward E</au><au>Hallam, Joshua</au><au>Mason, Sarah K</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Dual Immaculate Quasisymmetric Functions Expand Positively into Young Quasisymmetric Schur Functions</atitle><jtitle>arXiv.org</jtitle><date>2016-06-11</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We describe a combinatorial formula for the coefficients when the dual immaculate quasisymmetric functions are decomposed into Young quasisymmetric Schur functions. We prove this using an analogue of Schensted insertion. Using this result, we give necessary and sufficient conditions for a dual immaculate quasisymmetric function to be symmetric. Moreover, we show that the product of a Schur function and a dual immaculate quasisymmetric function expands positively in the Young quasisymmetric Schur basis. We also discuss the decomposition of the Young noncommutative Schur functions into the immaculate functions. Finally, we provide a Remmel-Whitney-style rule to generate the coefficients of the decomposition of the dual immaculates into the Young quasisymmetric Schurs algorithmically and an analogous rule for the decomposition of the dual bases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2079149232 |
source | Publicly Available Content (ProQuest) |
subjects | Combinatorial analysis Decomposition |
title | Dual Immaculate Quasisymmetric Functions Expand Positively into Young Quasisymmetric Schur Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A13%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Dual%20Immaculate%20Quasisymmetric%20Functions%20Expand%20Positively%20into%20Young%20Quasisymmetric%20Schur%20Functions&rft.jtitle=arXiv.org&rft.au=Allen,%20Edward%20E&rft.date=2016-06-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079149232%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20791492323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2079149232&rft_id=info:pmid/&rfr_iscdi=true |