Loading…
Query-Focused Opinion Summarization for User-Generated Content
We present a submodular function-based framework for query-focused opinion summarization. Within our framework, relevance ordering produced by a statistical ranker, and information coverage with respect to topic distribution and diverse viewpoints are both encoded as submodular functions. Dispersion...
Saved in:
Published in: | arXiv.org 2016-06 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wang, Lu Raghavan, Hema Cardie, Claire Castelli, Vittorio |
description | We present a submodular function-based framework for query-focused opinion summarization. Within our framework, relevance ordering produced by a statistical ranker, and information coverage with respect to topic distribution and diverse viewpoints are both encoded as submodular functions. Dispersion functions are utilized to minimize the redundancy. We are the first to evaluate different metrics of text similarity for submodularity-based summarization methods. By experimenting on community QA and blog summarization, we show that our system outperforms state-of-the-art approaches in both automatic evaluation and human evaluation. A human evaluation task is conducted on Amazon Mechanical Turk with scale, and shows that our systems are able to generate summaries of high overall quality and information diversity. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079239018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079239018</sourcerecordid><originalsourceid>FETCH-proquest_journals_20792390183</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCyxNLarUdctPLi1OTVHwL8jMy8zPUwguzc1NLMqsSiwB8dLyixRCi1OLdN1T81KLEkuACp3z80pS80p4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMDc0sjY0sDQwpg4VQDZHziN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079239018</pqid></control><display><type>article</type><title>Query-Focused Opinion Summarization for User-Generated Content</title><source>Publicly Available Content Database</source><creator>Wang, Lu ; Raghavan, Hema ; Cardie, Claire ; Castelli, Vittorio</creator><creatorcontrib>Wang, Lu ; Raghavan, Hema ; Cardie, Claire ; Castelli, Vittorio</creatorcontrib><description>We present a submodular function-based framework for query-focused opinion summarization. Within our framework, relevance ordering produced by a statistical ranker, and information coverage with respect to topic distribution and diverse viewpoints are both encoded as submodular functions. Dispersion functions are utilized to minimize the redundancy. We are the first to evaluate different metrics of text similarity for submodularity-based summarization methods. By experimenting on community QA and blog summarization, we show that our system outperforms state-of-the-art approaches in both automatic evaluation and human evaluation. A human evaluation task is conducted on Amazon Mechanical Turk with scale, and shows that our systems are able to generate summaries of high overall quality and information diversity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coding ; Quality assurance ; Redundancy ; User generated content</subject><ispartof>arXiv.org, 2016-06</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2079239018?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Raghavan, Hema</creatorcontrib><creatorcontrib>Cardie, Claire</creatorcontrib><creatorcontrib>Castelli, Vittorio</creatorcontrib><title>Query-Focused Opinion Summarization for User-Generated Content</title><title>arXiv.org</title><description>We present a submodular function-based framework for query-focused opinion summarization. Within our framework, relevance ordering produced by a statistical ranker, and information coverage with respect to topic distribution and diverse viewpoints are both encoded as submodular functions. Dispersion functions are utilized to minimize the redundancy. We are the first to evaluate different metrics of text similarity for submodularity-based summarization methods. By experimenting on community QA and blog summarization, we show that our system outperforms state-of-the-art approaches in both automatic evaluation and human evaluation. A human evaluation task is conducted on Amazon Mechanical Turk with scale, and shows that our systems are able to generate summaries of high overall quality and information diversity.</description><subject>Coding</subject><subject>Quality assurance</subject><subject>Redundancy</subject><subject>User generated content</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCyxNLarUdctPLi1OTVHwL8jMy8zPUwguzc1NLMqsSiwB8dLyixRCi1OLdN1T81KLEkuACp3z80pS80p4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMDc0sjY0sDQwpg4VQDZHziN</recordid><startdate>20160617</startdate><enddate>20160617</enddate><creator>Wang, Lu</creator><creator>Raghavan, Hema</creator><creator>Cardie, Claire</creator><creator>Castelli, Vittorio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160617</creationdate><title>Query-Focused Opinion Summarization for User-Generated Content</title><author>Wang, Lu ; Raghavan, Hema ; Cardie, Claire ; Castelli, Vittorio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20792390183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Coding</topic><topic>Quality assurance</topic><topic>Redundancy</topic><topic>User generated content</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Raghavan, Hema</creatorcontrib><creatorcontrib>Cardie, Claire</creatorcontrib><creatorcontrib>Castelli, Vittorio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lu</au><au>Raghavan, Hema</au><au>Cardie, Claire</au><au>Castelli, Vittorio</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Query-Focused Opinion Summarization for User-Generated Content</atitle><jtitle>arXiv.org</jtitle><date>2016-06-17</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We present a submodular function-based framework for query-focused opinion summarization. Within our framework, relevance ordering produced by a statistical ranker, and information coverage with respect to topic distribution and diverse viewpoints are both encoded as submodular functions. Dispersion functions are utilized to minimize the redundancy. We are the first to evaluate different metrics of text similarity for submodularity-based summarization methods. By experimenting on community QA and blog summarization, we show that our system outperforms state-of-the-art approaches in both automatic evaluation and human evaluation. A human evaluation task is conducted on Amazon Mechanical Turk with scale, and shows that our systems are able to generate summaries of high overall quality and information diversity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2079239018 |
source | Publicly Available Content Database |
subjects | Coding Quality assurance Redundancy User generated content |
title | Query-Focused Opinion Summarization for User-Generated Content |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Query-Focused%20Opinion%20Summarization%20for%20User-Generated%20Content&rft.jtitle=arXiv.org&rft.au=Wang,%20Lu&rft.date=2016-06-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079239018%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20792390183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2079239018&rft_id=info:pmid/&rfr_iscdi=true |