Loading…
A Cross-Platform Collection of Social Network Profiles
The proliferation of Internet-enabled devices and services has led to a shifting balance between digital and analogue aspects of our everyday lives. In the face of this development there is a growing demand for the study of privacy hazards, the potential for unique user de-anonymization and informat...
Saved in:
Published in: | arXiv.org 2016-07 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Maria Han Veiga Eickhoff, Carsten |
description | The proliferation of Internet-enabled devices and services has led to a shifting balance between digital and analogue aspects of our everyday lives. In the face of this development there is a growing demand for the study of privacy hazards, the potential for unique user de-anonymization and information leakage between the various social media profiles many of us maintain. To enable the structured study of such adversarial effects, this paper presents a dedicated dataset of cross-platform social network personas (i.e., the same person has accounts on multiple platforms). The corpus comprises 850 users who generate predominantly English content. Each user object contains the online footprint of the same person in three distinct social networks: Twitter, Instagram and Foursquare. In total, it encompasses over 2.5M tweets, 340k check-ins and 42k Instagram posts. We describe the collection methodology, characteristics of the dataset, and how to obtain it. Finally, we discuss a common use case, cross-platform user identification. |
doi_str_mv | 10.48550/arxiv.1607.03274 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079601959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079601959</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-358d23de1413794f4fd01482be488b3ed354a653a328f3783ca07a43f729d82e3</originalsourceid><addsrcrecordid>eNotzc1KAzEUQOEgCC21D9BdwPWMN_cmk2RZBv-gaMHuSzpJYGpsNJmqj6-gq7P7DmMrAa00SsGNK9_jZys60C0QannB5kgkGiMRZ2xZ6xEAsNOoFM1Zt-Z9ybU22-SmmMsb73NKYZjGfOI58pc8jC7xpzB95fLKtyXHMYV6xS6jSzUs_7tgu7vbXf_QbJ7vH_v1pnEKbUPKeCQfhBSkrYwyehDS4CFIYw4UPCnpOkWO0ETShgYH2kmKGq03GGjBrv_Y95I_zqFO-2M-l9PvcY-gbQfCKks_dn1FyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079601959</pqid></control><display><type>article</type><title>A Cross-Platform Collection of Social Network Profiles</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Maria Han Veiga ; Eickhoff, Carsten</creator><creatorcontrib>Maria Han Veiga ; Eickhoff, Carsten</creatorcontrib><description>The proliferation of Internet-enabled devices and services has led to a shifting balance between digital and analogue aspects of our everyday lives. In the face of this development there is a growing demand for the study of privacy hazards, the potential for unique user de-anonymization and information leakage between the various social media profiles many of us maintain. To enable the structured study of such adversarial effects, this paper presents a dedicated dataset of cross-platform social network personas (i.e., the same person has accounts on multiple platforms). The corpus comprises 850 users who generate predominantly English content. Each user object contains the online footprint of the same person in three distinct social networks: Twitter, Instagram and Foursquare. In total, it encompasses over 2.5M tweets, 340k check-ins and 42k Instagram posts. We describe the collection methodology, characteristics of the dataset, and how to obtain it. Finally, we discuss a common use case, cross-platform user identification.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1607.03274</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Digital media ; Privacy ; Social networks</subject><ispartof>arXiv.org, 2016-07</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2079601959?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Maria Han Veiga</creatorcontrib><creatorcontrib>Eickhoff, Carsten</creatorcontrib><title>A Cross-Platform Collection of Social Network Profiles</title><title>arXiv.org</title><description>The proliferation of Internet-enabled devices and services has led to a shifting balance between digital and analogue aspects of our everyday lives. In the face of this development there is a growing demand for the study of privacy hazards, the potential for unique user de-anonymization and information leakage between the various social media profiles many of us maintain. To enable the structured study of such adversarial effects, this paper presents a dedicated dataset of cross-platform social network personas (i.e., the same person has accounts on multiple platforms). The corpus comprises 850 users who generate predominantly English content. Each user object contains the online footprint of the same person in three distinct social networks: Twitter, Instagram and Foursquare. In total, it encompasses over 2.5M tweets, 340k check-ins and 42k Instagram posts. We describe the collection methodology, characteristics of the dataset, and how to obtain it. Finally, we discuss a common use case, cross-platform user identification.</description><subject>Datasets</subject><subject>Digital media</subject><subject>Privacy</subject><subject>Social networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzc1KAzEUQOEgCC21D9BdwPWMN_cmk2RZBv-gaMHuSzpJYGpsNJmqj6-gq7P7DmMrAa00SsGNK9_jZys60C0QannB5kgkGiMRZ2xZ6xEAsNOoFM1Zt-Z9ybU22-SmmMsb73NKYZjGfOI58pc8jC7xpzB95fLKtyXHMYV6xS6jSzUs_7tgu7vbXf_QbJ7vH_v1pnEKbUPKeCQfhBSkrYwyehDS4CFIYw4UPCnpOkWO0ETShgYH2kmKGq03GGjBrv_Y95I_zqFO-2M-l9PvcY-gbQfCKks_dn1FyA</recordid><startdate>20160712</startdate><enddate>20160712</enddate><creator>Maria Han Veiga</creator><creator>Eickhoff, Carsten</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160712</creationdate><title>A Cross-Platform Collection of Social Network Profiles</title><author>Maria Han Veiga ; Eickhoff, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-358d23de1413794f4fd01482be488b3ed354a653a328f3783ca07a43f729d82e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Datasets</topic><topic>Digital media</topic><topic>Privacy</topic><topic>Social networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Maria Han Veiga</creatorcontrib><creatorcontrib>Eickhoff, Carsten</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maria Han Veiga</au><au>Eickhoff, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cross-Platform Collection of Social Network Profiles</atitle><jtitle>arXiv.org</jtitle><date>2016-07-12</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>The proliferation of Internet-enabled devices and services has led to a shifting balance between digital and analogue aspects of our everyday lives. In the face of this development there is a growing demand for the study of privacy hazards, the potential for unique user de-anonymization and information leakage between the various social media profiles many of us maintain. To enable the structured study of such adversarial effects, this paper presents a dedicated dataset of cross-platform social network personas (i.e., the same person has accounts on multiple platforms). The corpus comprises 850 users who generate predominantly English content. Each user object contains the online footprint of the same person in three distinct social networks: Twitter, Instagram and Foursquare. In total, it encompasses over 2.5M tweets, 340k check-ins and 42k Instagram posts. We describe the collection methodology, characteristics of the dataset, and how to obtain it. Finally, we discuss a common use case, cross-platform user identification.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1607.03274</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2079601959 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Datasets Digital media Privacy Social networks |
title | A Cross-Platform Collection of Social Network Profiles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cross-Platform%20Collection%20of%20Social%20Network%20Profiles&rft.jtitle=arXiv.org&rft.au=Maria%20Han%20Veiga&rft.date=2016-07-12&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1607.03274&rft_dat=%3Cproquest%3E2079601959%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-358d23de1413794f4fd01482be488b3ed354a653a328f3783ca07a43f729d82e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2079601959&rft_id=info:pmid/&rfr_iscdi=true |