Loading…

Orbital selective spin excitations and their impact on superconductivity of LiFe1-xCoxAs

We use neutron scattering to study spin excitations in single crystals of LiFe\(_{0.88}\)Co\(_{0.12}\)As, which is located near the boundary of the superconducting phase of LiFe\(_{1-x}\)Co\(_{x}\)As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin exc...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-06
Main Authors: Li, Yu, Yin, Zhiping, Wang, Xiancheng, Tam, David W, Abernathy, D L, Podlesnyak, A, Zhang, Chenglin, Wang, Meng, Xing, Lingyi, Jin, Changqing, Haule, Kristjan, Kotliar, Gabriel, Maier, Thomas A, Dai, Pengcheng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Li, Yu
Yin, Zhiping
Wang, Xiancheng
Tam, David W
Abernathy, D L
Podlesnyak, A
Zhang, Chenglin
Wang, Meng
Xing, Lingyi
Jin, Changqing
Haule, Kristjan
Kotliar, Gabriel
Maier, Thomas A
Dai, Pengcheng
description We use neutron scattering to study spin excitations in single crystals of LiFe\(_{0.88}\)Co\(_{0.12}\)As, which is located near the boundary of the superconducting phase of LiFe\(_{1-x}\)Co\(_{x}\)As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe\(_{0.88}\)Co\(_{0.12}\)As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the \(d_{xy}\) orbitals, while high-energy spin excitations arise from the \(d_{yz}\) and \(d_{xz}\) orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAs family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe\(_{1-x}\)Co\(_x\)As are consistent with electron-hole Fermi surface nesting condition for the \(d_{xy}\) orbital, the reduced superconductivity in LiFe\(_{0.88}\)Co\(_{0.12}\)As suggests that Fermi surface nesting conditions for the \(d_{yz}\) and \(d_{xz}\) orbitals are also important for superconductivity in iron pnictides.
doi_str_mv 10.48550/arxiv.1606.00727
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079615254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079615254</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-8d1f0719833d36788f7d126d4ece468887c4c4651b647e705b72fa90ed87a3a43</originalsourceid><addsrcrecordid>eNotjU9LwzAchoMgOOY-gLeA5878T3ocxalQ2GUHbyNNfsWM2tQkHfXbO9HTCw88z4vQAyVbYaQkTzYt4bKliqgtIZrpG7RinNPKCMbu0CbnMyGEKc2k5Cv0fkhdKHbAGQZwJVwA5ymMGBZ3xSXEMWM7elw-ICQcPifrCo4jzvMEycXRz79SKN849rgNe6DV0sRll-_RbW-HDJv_XaPj_vnYvFbt4eWt2bWVlUxUxtOeaFobzj1X2phee8qUF-BAKGOMdsIJJWmnhAZNZKdZb2sC3mjLreBr9PiXnVL8miGX0znOabw-nhjRtaKSScF_ACZaUy4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079615254</pqid></control><display><type>article</type><title>Orbital selective spin excitations and their impact on superconductivity of LiFe1-xCoxAs</title><source>Publicly Available Content Database</source><creator>Li, Yu ; Yin, Zhiping ; Wang, Xiancheng ; Tam, David W ; Abernathy, D L ; Podlesnyak, A ; Zhang, Chenglin ; Wang, Meng ; Xing, Lingyi ; Jin, Changqing ; Haule, Kristjan ; Kotliar, Gabriel ; Maier, Thomas A ; Dai, Pengcheng</creator><creatorcontrib>Li, Yu ; Yin, Zhiping ; Wang, Xiancheng ; Tam, David W ; Abernathy, D L ; Podlesnyak, A ; Zhang, Chenglin ; Wang, Meng ; Xing, Lingyi ; Jin, Changqing ; Haule, Kristjan ; Kotliar, Gabriel ; Maier, Thomas A ; Dai, Pengcheng</creatorcontrib><description>We use neutron scattering to study spin excitations in single crystals of LiFe\(_{0.88}\)Co\(_{0.12}\)As, which is located near the boundary of the superconducting phase of LiFe\(_{1-x}\)Co\(_{x}\)As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe\(_{0.88}\)Co\(_{0.12}\)As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the \(d_{xy}\) orbitals, while high-energy spin excitations arise from the \(d_{yz}\) and \(d_{xz}\) orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAs family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe\(_{1-x}\)Co\(_x\)As are consistent with electron-hole Fermi surface nesting condition for the \(d_{xy}\) orbital, the reduced superconductivity in LiFe\(_{0.88}\)Co\(_{0.12}\)As suggests that Fermi surface nesting conditions for the \(d_{yz}\) and \(d_{xz}\) orbitals are also important for superconductivity in iron pnictides.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1606.00727</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Critical point ; Density functional theory ; Excitation ; Fermi surfaces ; Group 5A compounds ; Holes (electron deficiencies) ; Iron ; Mean field theory ; Nesting ; Neutron scattering ; Neutrons ; Orbitals ; Single crystals ; Superconductivity ; Superconductors</subject><ispartof>arXiv.org, 2016-06</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2079615254?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Yin, Zhiping</creatorcontrib><creatorcontrib>Wang, Xiancheng</creatorcontrib><creatorcontrib>Tam, David W</creatorcontrib><creatorcontrib>Abernathy, D L</creatorcontrib><creatorcontrib>Podlesnyak, A</creatorcontrib><creatorcontrib>Zhang, Chenglin</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Xing, Lingyi</creatorcontrib><creatorcontrib>Jin, Changqing</creatorcontrib><creatorcontrib>Haule, Kristjan</creatorcontrib><creatorcontrib>Kotliar, Gabriel</creatorcontrib><creatorcontrib>Maier, Thomas A</creatorcontrib><creatorcontrib>Dai, Pengcheng</creatorcontrib><title>Orbital selective spin excitations and their impact on superconductivity of LiFe1-xCoxAs</title><title>arXiv.org</title><description>We use neutron scattering to study spin excitations in single crystals of LiFe\(_{0.88}\)Co\(_{0.12}\)As, which is located near the boundary of the superconducting phase of LiFe\(_{1-x}\)Co\(_{x}\)As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe\(_{0.88}\)Co\(_{0.12}\)As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the \(d_{xy}\) orbitals, while high-energy spin excitations arise from the \(d_{yz}\) and \(d_{xz}\) orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAs family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe\(_{1-x}\)Co\(_x\)As are consistent with electron-hole Fermi surface nesting condition for the \(d_{xy}\) orbital, the reduced superconductivity in LiFe\(_{0.88}\)Co\(_{0.12}\)As suggests that Fermi surface nesting conditions for the \(d_{yz}\) and \(d_{xz}\) orbitals are also important for superconductivity in iron pnictides.</description><subject>Critical point</subject><subject>Density functional theory</subject><subject>Excitation</subject><subject>Fermi surfaces</subject><subject>Group 5A compounds</subject><subject>Holes (electron deficiencies)</subject><subject>Iron</subject><subject>Mean field theory</subject><subject>Nesting</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Orbitals</subject><subject>Single crystals</subject><subject>Superconductivity</subject><subject>Superconductors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU9LwzAchoMgOOY-gLeA5878T3ocxalQ2GUHbyNNfsWM2tQkHfXbO9HTCw88z4vQAyVbYaQkTzYt4bKliqgtIZrpG7RinNPKCMbu0CbnMyGEKc2k5Cv0fkhdKHbAGQZwJVwA5ymMGBZ3xSXEMWM7elw-ICQcPifrCo4jzvMEycXRz79SKN849rgNe6DV0sRll-_RbW-HDJv_XaPj_vnYvFbt4eWt2bWVlUxUxtOeaFobzj1X2phee8qUF-BAKGOMdsIJJWmnhAZNZKdZb2sC3mjLreBr9PiXnVL8miGX0znOabw-nhjRtaKSScF_ACZaUy4</recordid><startdate>20160602</startdate><enddate>20160602</enddate><creator>Li, Yu</creator><creator>Yin, Zhiping</creator><creator>Wang, Xiancheng</creator><creator>Tam, David W</creator><creator>Abernathy, D L</creator><creator>Podlesnyak, A</creator><creator>Zhang, Chenglin</creator><creator>Wang, Meng</creator><creator>Xing, Lingyi</creator><creator>Jin, Changqing</creator><creator>Haule, Kristjan</creator><creator>Kotliar, Gabriel</creator><creator>Maier, Thomas A</creator><creator>Dai, Pengcheng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160602</creationdate><title>Orbital selective spin excitations and their impact on superconductivity of LiFe1-xCoxAs</title><author>Li, Yu ; Yin, Zhiping ; Wang, Xiancheng ; Tam, David W ; Abernathy, D L ; Podlesnyak, A ; Zhang, Chenglin ; Wang, Meng ; Xing, Lingyi ; Jin, Changqing ; Haule, Kristjan ; Kotliar, Gabriel ; Maier, Thomas A ; Dai, Pengcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-8d1f0719833d36788f7d126d4ece468887c4c4651b647e705b72fa90ed87a3a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Critical point</topic><topic>Density functional theory</topic><topic>Excitation</topic><topic>Fermi surfaces</topic><topic>Group 5A compounds</topic><topic>Holes (electron deficiencies)</topic><topic>Iron</topic><topic>Mean field theory</topic><topic>Nesting</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Orbitals</topic><topic>Single crystals</topic><topic>Superconductivity</topic><topic>Superconductors</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Yin, Zhiping</creatorcontrib><creatorcontrib>Wang, Xiancheng</creatorcontrib><creatorcontrib>Tam, David W</creatorcontrib><creatorcontrib>Abernathy, D L</creatorcontrib><creatorcontrib>Podlesnyak, A</creatorcontrib><creatorcontrib>Zhang, Chenglin</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Xing, Lingyi</creatorcontrib><creatorcontrib>Jin, Changqing</creatorcontrib><creatorcontrib>Haule, Kristjan</creatorcontrib><creatorcontrib>Kotliar, Gabriel</creatorcontrib><creatorcontrib>Maier, Thomas A</creatorcontrib><creatorcontrib>Dai, Pengcheng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yu</au><au>Yin, Zhiping</au><au>Wang, Xiancheng</au><au>Tam, David W</au><au>Abernathy, D L</au><au>Podlesnyak, A</au><au>Zhang, Chenglin</au><au>Wang, Meng</au><au>Xing, Lingyi</au><au>Jin, Changqing</au><au>Haule, Kristjan</au><au>Kotliar, Gabriel</au><au>Maier, Thomas A</au><au>Dai, Pengcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbital selective spin excitations and their impact on superconductivity of LiFe1-xCoxAs</atitle><jtitle>arXiv.org</jtitle><date>2016-06-02</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We use neutron scattering to study spin excitations in single crystals of LiFe\(_{0.88}\)Co\(_{0.12}\)As, which is located near the boundary of the superconducting phase of LiFe\(_{1-x}\)Co\(_{x}\)As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe\(_{0.88}\)Co\(_{0.12}\)As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the \(d_{xy}\) orbitals, while high-energy spin excitations arise from the \(d_{yz}\) and \(d_{xz}\) orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAs family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe\(_{1-x}\)Co\(_x\)As are consistent with electron-hole Fermi surface nesting condition for the \(d_{xy}\) orbital, the reduced superconductivity in LiFe\(_{0.88}\)Co\(_{0.12}\)As suggests that Fermi surface nesting conditions for the \(d_{yz}\) and \(d_{xz}\) orbitals are also important for superconductivity in iron pnictides.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1606.00727</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2079615254
source Publicly Available Content Database
subjects Critical point
Density functional theory
Excitation
Fermi surfaces
Group 5A compounds
Holes (electron deficiencies)
Iron
Mean field theory
Nesting
Neutron scattering
Neutrons
Orbitals
Single crystals
Superconductivity
Superconductors
title Orbital selective spin excitations and their impact on superconductivity of LiFe1-xCoxAs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbital%20selective%20spin%20excitations%20and%20their%20impact%20on%20superconductivity%20of%20LiFe1-xCoxAs&rft.jtitle=arXiv.org&rft.au=Li,%20Yu&rft.date=2016-06-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1606.00727&rft_dat=%3Cproquest%3E2079615254%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-8d1f0719833d36788f7d126d4ece468887c4c4651b647e705b72fa90ed87a3a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2079615254&rft_id=info:pmid/&rfr_iscdi=true