Loading…
Orbital selective spin excitations and their impact on superconductivity of LiFe1-xCoxAs
We use neutron scattering to study spin excitations in single crystals of LiFe\(_{0.88}\)Co\(_{0.12}\)As, which is located near the boundary of the superconducting phase of LiFe\(_{1-x}\)Co\(_{x}\)As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin exc...
Saved in:
Published in: | arXiv.org 2016-06 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Li, Yu Yin, Zhiping Wang, Xiancheng Tam, David W Abernathy, D L Podlesnyak, A Zhang, Chenglin Wang, Meng Xing, Lingyi Jin, Changqing Haule, Kristjan Kotliar, Gabriel Maier, Thomas A Dai, Pengcheng |
description | We use neutron scattering to study spin excitations in single crystals of LiFe\(_{0.88}\)Co\(_{0.12}\)As, which is located near the boundary of the superconducting phase of LiFe\(_{1-x}\)Co\(_{x}\)As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe\(_{0.88}\)Co\(_{0.12}\)As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the \(d_{xy}\) orbitals, while high-energy spin excitations arise from the \(d_{yz}\) and \(d_{xz}\) orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAs family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe\(_{1-x}\)Co\(_x\)As are consistent with electron-hole Fermi surface nesting condition for the \(d_{xy}\) orbital, the reduced superconductivity in LiFe\(_{0.88}\)Co\(_{0.12}\)As suggests that Fermi surface nesting conditions for the \(d_{yz}\) and \(d_{xz}\) orbitals are also important for superconductivity in iron pnictides. |
doi_str_mv | 10.48550/arxiv.1606.00727 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079615254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079615254</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-8d1f0719833d36788f7d126d4ece468887c4c4651b647e705b72fa90ed87a3a43</originalsourceid><addsrcrecordid>eNotjU9LwzAchoMgOOY-gLeA5878T3ocxalQ2GUHbyNNfsWM2tQkHfXbO9HTCw88z4vQAyVbYaQkTzYt4bKliqgtIZrpG7RinNPKCMbu0CbnMyGEKc2k5Cv0fkhdKHbAGQZwJVwA5ymMGBZ3xSXEMWM7elw-ICQcPifrCo4jzvMEycXRz79SKN849rgNe6DV0sRll-_RbW-HDJv_XaPj_vnYvFbt4eWt2bWVlUxUxtOeaFobzj1X2phee8qUF-BAKGOMdsIJJWmnhAZNZKdZb2sC3mjLreBr9PiXnVL8miGX0znOabw-nhjRtaKSScF_ACZaUy4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079615254</pqid></control><display><type>article</type><title>Orbital selective spin excitations and their impact on superconductivity of LiFe1-xCoxAs</title><source>Publicly Available Content Database</source><creator>Li, Yu ; Yin, Zhiping ; Wang, Xiancheng ; Tam, David W ; Abernathy, D L ; Podlesnyak, A ; Zhang, Chenglin ; Wang, Meng ; Xing, Lingyi ; Jin, Changqing ; Haule, Kristjan ; Kotliar, Gabriel ; Maier, Thomas A ; Dai, Pengcheng</creator><creatorcontrib>Li, Yu ; Yin, Zhiping ; Wang, Xiancheng ; Tam, David W ; Abernathy, D L ; Podlesnyak, A ; Zhang, Chenglin ; Wang, Meng ; Xing, Lingyi ; Jin, Changqing ; Haule, Kristjan ; Kotliar, Gabriel ; Maier, Thomas A ; Dai, Pengcheng</creatorcontrib><description>We use neutron scattering to study spin excitations in single crystals of LiFe\(_{0.88}\)Co\(_{0.12}\)As, which is located near the boundary of the superconducting phase of LiFe\(_{1-x}\)Co\(_{x}\)As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe\(_{0.88}\)Co\(_{0.12}\)As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the \(d_{xy}\) orbitals, while high-energy spin excitations arise from the \(d_{yz}\) and \(d_{xz}\) orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAs family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe\(_{1-x}\)Co\(_x\)As are consistent with electron-hole Fermi surface nesting condition for the \(d_{xy}\) orbital, the reduced superconductivity in LiFe\(_{0.88}\)Co\(_{0.12}\)As suggests that Fermi surface nesting conditions for the \(d_{yz}\) and \(d_{xz}\) orbitals are also important for superconductivity in iron pnictides.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1606.00727</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Critical point ; Density functional theory ; Excitation ; Fermi surfaces ; Group 5A compounds ; Holes (electron deficiencies) ; Iron ; Mean field theory ; Nesting ; Neutron scattering ; Neutrons ; Orbitals ; Single crystals ; Superconductivity ; Superconductors</subject><ispartof>arXiv.org, 2016-06</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2079615254?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Yin, Zhiping</creatorcontrib><creatorcontrib>Wang, Xiancheng</creatorcontrib><creatorcontrib>Tam, David W</creatorcontrib><creatorcontrib>Abernathy, D L</creatorcontrib><creatorcontrib>Podlesnyak, A</creatorcontrib><creatorcontrib>Zhang, Chenglin</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Xing, Lingyi</creatorcontrib><creatorcontrib>Jin, Changqing</creatorcontrib><creatorcontrib>Haule, Kristjan</creatorcontrib><creatorcontrib>Kotliar, Gabriel</creatorcontrib><creatorcontrib>Maier, Thomas A</creatorcontrib><creatorcontrib>Dai, Pengcheng</creatorcontrib><title>Orbital selective spin excitations and their impact on superconductivity of LiFe1-xCoxAs</title><title>arXiv.org</title><description>We use neutron scattering to study spin excitations in single crystals of LiFe\(_{0.88}\)Co\(_{0.12}\)As, which is located near the boundary of the superconducting phase of LiFe\(_{1-x}\)Co\(_{x}\)As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe\(_{0.88}\)Co\(_{0.12}\)As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the \(d_{xy}\) orbitals, while high-energy spin excitations arise from the \(d_{yz}\) and \(d_{xz}\) orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAs family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe\(_{1-x}\)Co\(_x\)As are consistent with electron-hole Fermi surface nesting condition for the \(d_{xy}\) orbital, the reduced superconductivity in LiFe\(_{0.88}\)Co\(_{0.12}\)As suggests that Fermi surface nesting conditions for the \(d_{yz}\) and \(d_{xz}\) orbitals are also important for superconductivity in iron pnictides.</description><subject>Critical point</subject><subject>Density functional theory</subject><subject>Excitation</subject><subject>Fermi surfaces</subject><subject>Group 5A compounds</subject><subject>Holes (electron deficiencies)</subject><subject>Iron</subject><subject>Mean field theory</subject><subject>Nesting</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Orbitals</subject><subject>Single crystals</subject><subject>Superconductivity</subject><subject>Superconductors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU9LwzAchoMgOOY-gLeA5878T3ocxalQ2GUHbyNNfsWM2tQkHfXbO9HTCw88z4vQAyVbYaQkTzYt4bKliqgtIZrpG7RinNPKCMbu0CbnMyGEKc2k5Cv0fkhdKHbAGQZwJVwA5ymMGBZ3xSXEMWM7elw-ICQcPifrCo4jzvMEycXRz79SKN849rgNe6DV0sRll-_RbW-HDJv_XaPj_vnYvFbt4eWt2bWVlUxUxtOeaFobzj1X2phee8qUF-BAKGOMdsIJJWmnhAZNZKdZb2sC3mjLreBr9PiXnVL8miGX0znOabw-nhjRtaKSScF_ACZaUy4</recordid><startdate>20160602</startdate><enddate>20160602</enddate><creator>Li, Yu</creator><creator>Yin, Zhiping</creator><creator>Wang, Xiancheng</creator><creator>Tam, David W</creator><creator>Abernathy, D L</creator><creator>Podlesnyak, A</creator><creator>Zhang, Chenglin</creator><creator>Wang, Meng</creator><creator>Xing, Lingyi</creator><creator>Jin, Changqing</creator><creator>Haule, Kristjan</creator><creator>Kotliar, Gabriel</creator><creator>Maier, Thomas A</creator><creator>Dai, Pengcheng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160602</creationdate><title>Orbital selective spin excitations and their impact on superconductivity of LiFe1-xCoxAs</title><author>Li, Yu ; Yin, Zhiping ; Wang, Xiancheng ; Tam, David W ; Abernathy, D L ; Podlesnyak, A ; Zhang, Chenglin ; Wang, Meng ; Xing, Lingyi ; Jin, Changqing ; Haule, Kristjan ; Kotliar, Gabriel ; Maier, Thomas A ; Dai, Pengcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-8d1f0719833d36788f7d126d4ece468887c4c4651b647e705b72fa90ed87a3a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Critical point</topic><topic>Density functional theory</topic><topic>Excitation</topic><topic>Fermi surfaces</topic><topic>Group 5A compounds</topic><topic>Holes (electron deficiencies)</topic><topic>Iron</topic><topic>Mean field theory</topic><topic>Nesting</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Orbitals</topic><topic>Single crystals</topic><topic>Superconductivity</topic><topic>Superconductors</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Yin, Zhiping</creatorcontrib><creatorcontrib>Wang, Xiancheng</creatorcontrib><creatorcontrib>Tam, David W</creatorcontrib><creatorcontrib>Abernathy, D L</creatorcontrib><creatorcontrib>Podlesnyak, A</creatorcontrib><creatorcontrib>Zhang, Chenglin</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Xing, Lingyi</creatorcontrib><creatorcontrib>Jin, Changqing</creatorcontrib><creatorcontrib>Haule, Kristjan</creatorcontrib><creatorcontrib>Kotliar, Gabriel</creatorcontrib><creatorcontrib>Maier, Thomas A</creatorcontrib><creatorcontrib>Dai, Pengcheng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yu</au><au>Yin, Zhiping</au><au>Wang, Xiancheng</au><au>Tam, David W</au><au>Abernathy, D L</au><au>Podlesnyak, A</au><au>Zhang, Chenglin</au><au>Wang, Meng</au><au>Xing, Lingyi</au><au>Jin, Changqing</au><au>Haule, Kristjan</au><au>Kotliar, Gabriel</au><au>Maier, Thomas A</au><au>Dai, Pengcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbital selective spin excitations and their impact on superconductivity of LiFe1-xCoxAs</atitle><jtitle>arXiv.org</jtitle><date>2016-06-02</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We use neutron scattering to study spin excitations in single crystals of LiFe\(_{0.88}\)Co\(_{0.12}\)As, which is located near the boundary of the superconducting phase of LiFe\(_{1-x}\)Co\(_{x}\)As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe\(_{0.88}\)Co\(_{0.12}\)As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the \(d_{xy}\) orbitals, while high-energy spin excitations arise from the \(d_{yz}\) and \(d_{xz}\) orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAs family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe\(_{1-x}\)Co\(_x\)As are consistent with electron-hole Fermi surface nesting condition for the \(d_{xy}\) orbital, the reduced superconductivity in LiFe\(_{0.88}\)Co\(_{0.12}\)As suggests that Fermi surface nesting conditions for the \(d_{yz}\) and \(d_{xz}\) orbitals are also important for superconductivity in iron pnictides.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1606.00727</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2079615254 |
source | Publicly Available Content Database |
subjects | Critical point Density functional theory Excitation Fermi surfaces Group 5A compounds Holes (electron deficiencies) Iron Mean field theory Nesting Neutron scattering Neutrons Orbitals Single crystals Superconductivity Superconductors |
title | Orbital selective spin excitations and their impact on superconductivity of LiFe1-xCoxAs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbital%20selective%20spin%20excitations%20and%20their%20impact%20on%20superconductivity%20of%20LiFe1-xCoxAs&rft.jtitle=arXiv.org&rft.au=Li,%20Yu&rft.date=2016-06-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1606.00727&rft_dat=%3Cproquest%3E2079615254%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-8d1f0719833d36788f7d126d4ece468887c4c4651b647e705b72fa90ed87a3a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2079615254&rft_id=info:pmid/&rfr_iscdi=true |