Loading…

Lexical-Morphological Modeling for Legal Text Analysis

In the context of the Competition on Legal Information Extraction/Entailment (COLIEE), we propose a method comprising the necessary steps for finding relevant documents to a legal question and deciding on textual entailment evidence to provide a correct answer. The proposed method is based on the co...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-09
Main Authors: Carvalho, Danilo S, Minh-Tien Nguyen, Tran, Xuan Chien, Minh Le Nguyen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Carvalho, Danilo S
Minh-Tien Nguyen
Tran, Xuan Chien
Minh Le Nguyen
description In the context of the Competition on Legal Information Extraction/Entailment (COLIEE), we propose a method comprising the necessary steps for finding relevant documents to a legal question and deciding on textual entailment evidence to provide a correct answer. The proposed method is based on the combination of several lexical and morphological characteristics, to build a language model and a set of features for Machine Learning algorithms. We provide a detailed study on the proposed method performance and failure cases, indicating that it is competitive with state-of-the-art approaches on Legal Information Retrieval and Question Answering, while not needing extensive training data nor depending on expert produced knowledge. The proposed method achieved significant results in the competition, indicating a substantial level of adequacy for the tasks addressed.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079615982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079615982</sourcerecordid><originalsourceid>FETCH-proquest_journals_20796159823</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw80mtyExOzNH1zS8qyMjPyU8H8RR881NSczLz0hXS8osUfFLTgUIhqRUlCo55iTmVxZnFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QIqLg43sjA3NLM0NTSwsiYOFUAwYU1QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079615982</pqid></control><display><type>article</type><title>Lexical-Morphological Modeling for Legal Text Analysis</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Carvalho, Danilo S ; Minh-Tien Nguyen ; Tran, Xuan Chien ; Minh Le Nguyen</creator><creatorcontrib>Carvalho, Danilo S ; Minh-Tien Nguyen ; Tran, Xuan Chien ; Minh Le Nguyen</creatorcontrib><description>In the context of the Competition on Legal Information Extraction/Entailment (COLIEE), we propose a method comprising the necessary steps for finding relevant documents to a legal question and deciding on textual entailment evidence to provide a correct answer. The proposed method is based on the combination of several lexical and morphological characteristics, to build a language model and a set of features for Machine Learning algorithms. We provide a detailed study on the proposed method performance and failure cases, indicating that it is competitive with state-of-the-art approaches on Legal Information Retrieval and Question Answering, while not needing extensive training data nor depending on expert produced knowledge. The proposed method achieved significant results in the competition, indicating a substantial level of adequacy for the tasks addressed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adequacy ; Algorithms ; Competition ; Information retrieval ; Legal information ; Machine learning ; Morphology</subject><ispartof>arXiv.org, 2016-09</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2079615982?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Carvalho, Danilo S</creatorcontrib><creatorcontrib>Minh-Tien Nguyen</creatorcontrib><creatorcontrib>Tran, Xuan Chien</creatorcontrib><creatorcontrib>Minh Le Nguyen</creatorcontrib><title>Lexical-Morphological Modeling for Legal Text Analysis</title><title>arXiv.org</title><description>In the context of the Competition on Legal Information Extraction/Entailment (COLIEE), we propose a method comprising the necessary steps for finding relevant documents to a legal question and deciding on textual entailment evidence to provide a correct answer. The proposed method is based on the combination of several lexical and morphological characteristics, to build a language model and a set of features for Machine Learning algorithms. We provide a detailed study on the proposed method performance and failure cases, indicating that it is competitive with state-of-the-art approaches on Legal Information Retrieval and Question Answering, while not needing extensive training data nor depending on expert produced knowledge. The proposed method achieved significant results in the competition, indicating a substantial level of adequacy for the tasks addressed.</description><subject>Adequacy</subject><subject>Algorithms</subject><subject>Competition</subject><subject>Information retrieval</subject><subject>Legal information</subject><subject>Machine learning</subject><subject>Morphology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw80mtyExOzNH1zS8qyMjPyU8H8RR881NSczLz0hXS8osUfFLTgUIhqRUlCo55iTmVxZnFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QIqLg43sjA3NLM0NTSwsiYOFUAwYU1QA</recordid><startdate>20160903</startdate><enddate>20160903</enddate><creator>Carvalho, Danilo S</creator><creator>Minh-Tien Nguyen</creator><creator>Tran, Xuan Chien</creator><creator>Minh Le Nguyen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160903</creationdate><title>Lexical-Morphological Modeling for Legal Text Analysis</title><author>Carvalho, Danilo S ; Minh-Tien Nguyen ; Tran, Xuan Chien ; Minh Le Nguyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20796159823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adequacy</topic><topic>Algorithms</topic><topic>Competition</topic><topic>Information retrieval</topic><topic>Legal information</topic><topic>Machine learning</topic><topic>Morphology</topic><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Danilo S</creatorcontrib><creatorcontrib>Minh-Tien Nguyen</creatorcontrib><creatorcontrib>Tran, Xuan Chien</creatorcontrib><creatorcontrib>Minh Le Nguyen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Danilo S</au><au>Minh-Tien Nguyen</au><au>Tran, Xuan Chien</au><au>Minh Le Nguyen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Lexical-Morphological Modeling for Legal Text Analysis</atitle><jtitle>arXiv.org</jtitle><date>2016-09-03</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>In the context of the Competition on Legal Information Extraction/Entailment (COLIEE), we propose a method comprising the necessary steps for finding relevant documents to a legal question and deciding on textual entailment evidence to provide a correct answer. The proposed method is based on the combination of several lexical and morphological characteristics, to build a language model and a set of features for Machine Learning algorithms. We provide a detailed study on the proposed method performance and failure cases, indicating that it is competitive with state-of-the-art approaches on Legal Information Retrieval and Question Answering, while not needing extensive training data nor depending on expert produced knowledge. The proposed method achieved significant results in the competition, indicating a substantial level of adequacy for the tasks addressed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2079615982
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Adequacy
Algorithms
Competition
Information retrieval
Legal information
Machine learning
Morphology
title Lexical-Morphological Modeling for Legal Text Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Lexical-Morphological%20Modeling%20for%20Legal%20Text%20Analysis&rft.jtitle=arXiv.org&rft.au=Carvalho,%20Danilo%20S&rft.date=2016-09-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079615982%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20796159823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2079615982&rft_id=info:pmid/&rfr_iscdi=true