Loading…

2D MXene Nanofilms with Tunable Gas Transport Channels

2D materials' membranes with well‐defined nanochannels are promising for precise molecular separation. Herein, the design and engineering of atomically thin 2D MXene flacks into nanofilms with a thickness of 20 nm for gas separation are reported. Well‐stacked pristine MXene nanofilms are proven...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2018-08, Vol.28 (31), p.n/a
Main Authors: Shen, Jie, Liu, Guozhen, Ji, Yufan, Liu, Quan, Cheng, Long, Guan, Kecheng, Zhang, Mengchen, Liu, Gongping, Xiong, Jie, Yang, Jian, Jin, Wanqin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3541-5dbfb8002bf7cedad112ca4ea57980ae50673fe101508ef1ece2ae145a03d29b3
cites cdi_FETCH-LOGICAL-c3541-5dbfb8002bf7cedad112ca4ea57980ae50673fe101508ef1ece2ae145a03d29b3
container_end_page n/a
container_issue 31
container_start_page
container_title Advanced functional materials
container_volume 28
creator Shen, Jie
Liu, Guozhen
Ji, Yufan
Liu, Quan
Cheng, Long
Guan, Kecheng
Zhang, Mengchen
Liu, Gongping
Xiong, Jie
Yang, Jian
Jin, Wanqin
description 2D materials' membranes with well‐defined nanochannels are promising for precise molecular separation. Herein, the design and engineering of atomically thin 2D MXene flacks into nanofilms with a thickness of 20 nm for gas separation are reported. Well‐stacked pristine MXene nanofilms are proven to show outstanding molecular sieving property for H2 preferential transport. Chemical tuning of the MXene nanochannels is also rationally designed for selective permeating CO2. Borate and polyethylenimine (PEI) molecules are well interlocked into MXene layers, realizing the delicate regulation of stacking behaviors and interlayer spacing of MXene nanosheets. The MXene nanofilms with either H2‐ or CO2‐selective transport channels exhibit excellent gas separation performance beyond the limits for state‐of‐the‐art membranes. The mechanisms within these nanoconfined MXene layers are discussed, revealing the transformation from “diffusion‐controlled” to “solution‐controlled” channels after chemical tuning. This work of precisely tailoring the 2D nanostructure may inspire the exploring of nanofluidics in 2D confined space with applications in many other fields like catalysis and energy conversion processes. Ultrathin 2D MXene nanofilms with a thickness of 20 nm are designed and fabricated. A highly ordered stacking nanostructure and penetrantphilic interlayer spaces with sub‐nanometer size are delicately regulated to enable the MXene nanofilms with tunable gas transport channels (H2‐ or CO2‐selective), and exhibit extraordinary molecular gas sieving performance transcending the upper bound of state‐of‐the‐art membranes.
doi_str_mv 10.1002/adfm.201801511
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2079694517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079694517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3541-5dbfb8002bf7cedad112ca4ea57980ae50673fe101508ef1ece2ae145a03d29b3</originalsourceid><addsrcrecordid>eNqFkDFvwjAQRq2qlUpp186WOof6nDhORgSFVoJ2oRKbdUnOIig41AYh_j1BVHTsdDd87-7TY-wZxACEkK9Y2c1ACsgEKIAb1oMU0igWMru97rC8Zw8hrIUAreOkx1I55vMlOeKf6FpbN5vAD_VuxRd7h0VDfIqBLzy6sG39jo9W6Bw14ZHdWWwCPf3OPvuevC1G79Hsa_oxGs6iMlYJRKoqbJF15QqrS6qwApAlJoRK55lAUiLVsSXoGouMLFBJEgkShSKuZF7EffZyubv17c-ews6s27133Usjhc7TPFGgu9Tgkip9G4Ina7a-3qA_GhDm7Mac3Zirmw7IL8Chbuj4T9oMx5P5H3sCtcRm7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079694517</pqid></control><display><type>article</type><title>2D MXene Nanofilms with Tunable Gas Transport Channels</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Shen, Jie ; Liu, Guozhen ; Ji, Yufan ; Liu, Quan ; Cheng, Long ; Guan, Kecheng ; Zhang, Mengchen ; Liu, Gongping ; Xiong, Jie ; Yang, Jian ; Jin, Wanqin</creator><creatorcontrib>Shen, Jie ; Liu, Guozhen ; Ji, Yufan ; Liu, Quan ; Cheng, Long ; Guan, Kecheng ; Zhang, Mengchen ; Liu, Gongping ; Xiong, Jie ; Yang, Jian ; Jin, Wanqin</creatorcontrib><description>2D materials' membranes with well‐defined nanochannels are promising for precise molecular separation. Herein, the design and engineering of atomically thin 2D MXene flacks into nanofilms with a thickness of 20 nm for gas separation are reported. Well‐stacked pristine MXene nanofilms are proven to show outstanding molecular sieving property for H2 preferential transport. Chemical tuning of the MXene nanochannels is also rationally designed for selective permeating CO2. Borate and polyethylenimine (PEI) molecules are well interlocked into MXene layers, realizing the delicate regulation of stacking behaviors and interlayer spacing of MXene nanosheets. The MXene nanofilms with either H2‐ or CO2‐selective transport channels exhibit excellent gas separation performance beyond the limits for state‐of‐the‐art membranes. The mechanisms within these nanoconfined MXene layers are discussed, revealing the transformation from “diffusion‐controlled” to “solution‐controlled” channels after chemical tuning. This work of precisely tailoring the 2D nanostructure may inspire the exploring of nanofluidics in 2D confined space with applications in many other fields like catalysis and energy conversion processes. Ultrathin 2D MXene nanofilms with a thickness of 20 nm are designed and fabricated. A highly ordered stacking nanostructure and penetrantphilic interlayer spaces with sub‐nanometer size are delicately regulated to enable the MXene nanofilms with tunable gas transport channels (H2‐ or CO2‐selective), and exhibit extraordinary molecular gas sieving performance transcending the upper bound of state‐of‐the‐art membranes.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201801511</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Carbon dioxide ; Catalysis ; Confined spaces ; Design engineering ; Diffusion layers ; Energy conversion ; Fluidics ; Gas separation ; Gas transport ; Interlayers ; Materials science ; Membranes ; molecular sieving ; MXene ; MXenes ; Nanochannels ; nanofilms ; Nanofluids ; Organic chemistry ; Polyethyleneimine ; Thickness ; Tuning</subject><ispartof>Advanced functional materials, 2018-08, Vol.28 (31), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3541-5dbfb8002bf7cedad112ca4ea57980ae50673fe101508ef1ece2ae145a03d29b3</citedby><cites>FETCH-LOGICAL-c3541-5dbfb8002bf7cedad112ca4ea57980ae50673fe101508ef1ece2ae145a03d29b3</cites><orcidid>0000-0001-8103-4883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Shen, Jie</creatorcontrib><creatorcontrib>Liu, Guozhen</creatorcontrib><creatorcontrib>Ji, Yufan</creatorcontrib><creatorcontrib>Liu, Quan</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Guan, Kecheng</creatorcontrib><creatorcontrib>Zhang, Mengchen</creatorcontrib><creatorcontrib>Liu, Gongping</creatorcontrib><creatorcontrib>Xiong, Jie</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Jin, Wanqin</creatorcontrib><title>2D MXene Nanofilms with Tunable Gas Transport Channels</title><title>Advanced functional materials</title><description>2D materials' membranes with well‐defined nanochannels are promising for precise molecular separation. Herein, the design and engineering of atomically thin 2D MXene flacks into nanofilms with a thickness of 20 nm for gas separation are reported. Well‐stacked pristine MXene nanofilms are proven to show outstanding molecular sieving property for H2 preferential transport. Chemical tuning of the MXene nanochannels is also rationally designed for selective permeating CO2. Borate and polyethylenimine (PEI) molecules are well interlocked into MXene layers, realizing the delicate regulation of stacking behaviors and interlayer spacing of MXene nanosheets. The MXene nanofilms with either H2‐ or CO2‐selective transport channels exhibit excellent gas separation performance beyond the limits for state‐of‐the‐art membranes. The mechanisms within these nanoconfined MXene layers are discussed, revealing the transformation from “diffusion‐controlled” to “solution‐controlled” channels after chemical tuning. This work of precisely tailoring the 2D nanostructure may inspire the exploring of nanofluidics in 2D confined space with applications in many other fields like catalysis and energy conversion processes. Ultrathin 2D MXene nanofilms with a thickness of 20 nm are designed and fabricated. A highly ordered stacking nanostructure and penetrantphilic interlayer spaces with sub‐nanometer size are delicately regulated to enable the MXene nanofilms with tunable gas transport channels (H2‐ or CO2‐selective), and exhibit extraordinary molecular gas sieving performance transcending the upper bound of state‐of‐the‐art membranes.</description><subject>2D materials</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Confined spaces</subject><subject>Design engineering</subject><subject>Diffusion layers</subject><subject>Energy conversion</subject><subject>Fluidics</subject><subject>Gas separation</subject><subject>Gas transport</subject><subject>Interlayers</subject><subject>Materials science</subject><subject>Membranes</subject><subject>molecular sieving</subject><subject>MXene</subject><subject>MXenes</subject><subject>Nanochannels</subject><subject>nanofilms</subject><subject>Nanofluids</subject><subject>Organic chemistry</subject><subject>Polyethyleneimine</subject><subject>Thickness</subject><subject>Tuning</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkDFvwjAQRq2qlUpp186WOof6nDhORgSFVoJ2oRKbdUnOIig41AYh_j1BVHTsdDd87-7TY-wZxACEkK9Y2c1ACsgEKIAb1oMU0igWMru97rC8Zw8hrIUAreOkx1I55vMlOeKf6FpbN5vAD_VuxRd7h0VDfIqBLzy6sG39jo9W6Bw14ZHdWWwCPf3OPvuevC1G79Hsa_oxGs6iMlYJRKoqbJF15QqrS6qwApAlJoRK55lAUiLVsSXoGouMLFBJEgkShSKuZF7EffZyubv17c-ews6s27133Usjhc7TPFGgu9Tgkip9G4Ina7a-3qA_GhDm7Mac3Zirmw7IL8Chbuj4T9oMx5P5H3sCtcRm7g</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Shen, Jie</creator><creator>Liu, Guozhen</creator><creator>Ji, Yufan</creator><creator>Liu, Quan</creator><creator>Cheng, Long</creator><creator>Guan, Kecheng</creator><creator>Zhang, Mengchen</creator><creator>Liu, Gongping</creator><creator>Xiong, Jie</creator><creator>Yang, Jian</creator><creator>Jin, Wanqin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8103-4883</orcidid></search><sort><creationdate>20180801</creationdate><title>2D MXene Nanofilms with Tunable Gas Transport Channels</title><author>Shen, Jie ; Liu, Guozhen ; Ji, Yufan ; Liu, Quan ; Cheng, Long ; Guan, Kecheng ; Zhang, Mengchen ; Liu, Gongping ; Xiong, Jie ; Yang, Jian ; Jin, Wanqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3541-5dbfb8002bf7cedad112ca4ea57980ae50673fe101508ef1ece2ae145a03d29b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>2D materials</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Confined spaces</topic><topic>Design engineering</topic><topic>Diffusion layers</topic><topic>Energy conversion</topic><topic>Fluidics</topic><topic>Gas separation</topic><topic>Gas transport</topic><topic>Interlayers</topic><topic>Materials science</topic><topic>Membranes</topic><topic>molecular sieving</topic><topic>MXene</topic><topic>MXenes</topic><topic>Nanochannels</topic><topic>nanofilms</topic><topic>Nanofluids</topic><topic>Organic chemistry</topic><topic>Polyethyleneimine</topic><topic>Thickness</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jie</creatorcontrib><creatorcontrib>Liu, Guozhen</creatorcontrib><creatorcontrib>Ji, Yufan</creatorcontrib><creatorcontrib>Liu, Quan</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Guan, Kecheng</creatorcontrib><creatorcontrib>Zhang, Mengchen</creatorcontrib><creatorcontrib>Liu, Gongping</creatorcontrib><creatorcontrib>Xiong, Jie</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Jin, Wanqin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jie</au><au>Liu, Guozhen</au><au>Ji, Yufan</au><au>Liu, Quan</au><au>Cheng, Long</au><au>Guan, Kecheng</au><au>Zhang, Mengchen</au><au>Liu, Gongping</au><au>Xiong, Jie</au><au>Yang, Jian</au><au>Jin, Wanqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D MXene Nanofilms with Tunable Gas Transport Channels</atitle><jtitle>Advanced functional materials</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>28</volume><issue>31</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>2D materials' membranes with well‐defined nanochannels are promising for precise molecular separation. Herein, the design and engineering of atomically thin 2D MXene flacks into nanofilms with a thickness of 20 nm for gas separation are reported. Well‐stacked pristine MXene nanofilms are proven to show outstanding molecular sieving property for H2 preferential transport. Chemical tuning of the MXene nanochannels is also rationally designed for selective permeating CO2. Borate and polyethylenimine (PEI) molecules are well interlocked into MXene layers, realizing the delicate regulation of stacking behaviors and interlayer spacing of MXene nanosheets. The MXene nanofilms with either H2‐ or CO2‐selective transport channels exhibit excellent gas separation performance beyond the limits for state‐of‐the‐art membranes. The mechanisms within these nanoconfined MXene layers are discussed, revealing the transformation from “diffusion‐controlled” to “solution‐controlled” channels after chemical tuning. This work of precisely tailoring the 2D nanostructure may inspire the exploring of nanofluidics in 2D confined space with applications in many other fields like catalysis and energy conversion processes. Ultrathin 2D MXene nanofilms with a thickness of 20 nm are designed and fabricated. A highly ordered stacking nanostructure and penetrantphilic interlayer spaces with sub‐nanometer size are delicately regulated to enable the MXene nanofilms with tunable gas transport channels (H2‐ or CO2‐selective), and exhibit extraordinary molecular gas sieving performance transcending the upper bound of state‐of‐the‐art membranes.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201801511</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8103-4883</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-08, Vol.28 (31), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2079694517
source Wiley-Blackwell Read & Publish Collection
subjects 2D materials
Carbon dioxide
Catalysis
Confined spaces
Design engineering
Diffusion layers
Energy conversion
Fluidics
Gas separation
Gas transport
Interlayers
Materials science
Membranes
molecular sieving
MXene
MXenes
Nanochannels
nanofilms
Nanofluids
Organic chemistry
Polyethyleneimine
Thickness
Tuning
title 2D MXene Nanofilms with Tunable Gas Transport Channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20MXene%20Nanofilms%20with%20Tunable%20Gas%20Transport%20Channels&rft.jtitle=Advanced%20functional%20materials&rft.au=Shen,%20Jie&rft.date=2018-08-01&rft.volume=28&rft.issue=31&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201801511&rft_dat=%3Cproquest_cross%3E2079694517%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3541-5dbfb8002bf7cedad112ca4ea57980ae50673fe101508ef1ece2ae145a03d29b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2079694517&rft_id=info:pmid/&rfr_iscdi=true