Loading…
A new structural stochastic volatility model of asset pricing and its stylized facts
Building on a prominent agent-based model, we present a new structural stochastic volatility asset pricing model of fundamentalists vs. chartists where the prices are determined based on excess demand. Specifically, this allows for modelling stochastic interactions between agents, based on a herding...
Saved in:
Published in: | arXiv.org 2016-04 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pruna, Radu T Polukarov, Maria Jennings, Nicholas R |
description | Building on a prominent agent-based model, we present a new structural stochastic volatility asset pricing model of fundamentalists vs. chartists where the prices are determined based on excess demand. Specifically, this allows for modelling stochastic interactions between agents, based on a herding process corrected by a price misalignment, and incorporating strong noise components in the agents' demand. The model's parameters are estimated using the method of simulated moments, where the moments reflect the basic properties of the daily returns of a stock market index. In addition, for the first time we apply a (parametric) bootstrap method in a setting where the switching between strategies is modelled using a discrete choice approach. As we demonstrate, the resulting dynamics replicate a rich set of the stylized facts of the daily financial data including: heavy tails, volatility clustering, long memory in absolute returns, as well as the absence of autocorrelation in raw returns, volatility-volume correlations, aggregate Gaussianity, concave price impact and extreme price events. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079814976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079814976</sourcerecordid><originalsourceid>FETCH-proquest_journals_20798149763</originalsourceid><addsrcrecordid>eNqNi0sKwjAURYMgWLR7eOC4kCb9DkUUF9C5hDTVlNjUvFelrt4OXICje-Ccu2KRkDJNqkyIDYsRe865KEqR5zJizQEG8wakMGmagnILen1XSFbDyztF1lma4eFb48B3oBANwRistsMN1NCCJVxOs7Mf00KnNOGOrTvl0MS_3bL9-dQcL8kY_HMySNfeT2FY1FXwsq7SrC4L-V_1BdW1QSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079814976</pqid></control><display><type>article</type><title>A new structural stochastic volatility model of asset pricing and its stylized facts</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Pruna, Radu T ; Polukarov, Maria ; Jennings, Nicholas R</creator><creatorcontrib>Pruna, Radu T ; Polukarov, Maria ; Jennings, Nicholas R</creatorcontrib><description>Building on a prominent agent-based model, we present a new structural stochastic volatility asset pricing model of fundamentalists vs. chartists where the prices are determined based on excess demand. Specifically, this allows for modelling stochastic interactions between agents, based on a herding process corrected by a price misalignment, and incorporating strong noise components in the agents' demand. The model's parameters are estimated using the method of simulated moments, where the moments reflect the basic properties of the daily returns of a stock market index. In addition, for the first time we apply a (parametric) bootstrap method in a setting where the switching between strategies is modelled using a discrete choice approach. As we demonstrate, the resulting dynamics replicate a rich set of the stylized facts of the daily financial data including: heavy tails, volatility clustering, long memory in absolute returns, as well as the absence of autocorrelation in raw returns, volatility-volume correlations, aggregate Gaussianity, concave price impact and extreme price events.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Computer simulation ; Economic models ; Misalignment ; Parameter estimation ; Pricing ; Statistical methods ; Stochastic models ; Stock market indexes ; Volatility</subject><ispartof>arXiv.org, 2016-04</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2079814976?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Pruna, Radu T</creatorcontrib><creatorcontrib>Polukarov, Maria</creatorcontrib><creatorcontrib>Jennings, Nicholas R</creatorcontrib><title>A new structural stochastic volatility model of asset pricing and its stylized facts</title><title>arXiv.org</title><description>Building on a prominent agent-based model, we present a new structural stochastic volatility asset pricing model of fundamentalists vs. chartists where the prices are determined based on excess demand. Specifically, this allows for modelling stochastic interactions between agents, based on a herding process corrected by a price misalignment, and incorporating strong noise components in the agents' demand. The model's parameters are estimated using the method of simulated moments, where the moments reflect the basic properties of the daily returns of a stock market index. In addition, for the first time we apply a (parametric) bootstrap method in a setting where the switching between strategies is modelled using a discrete choice approach. As we demonstrate, the resulting dynamics replicate a rich set of the stylized facts of the daily financial data including: heavy tails, volatility clustering, long memory in absolute returns, as well as the absence of autocorrelation in raw returns, volatility-volume correlations, aggregate Gaussianity, concave price impact and extreme price events.</description><subject>Clustering</subject><subject>Computer simulation</subject><subject>Economic models</subject><subject>Misalignment</subject><subject>Parameter estimation</subject><subject>Pricing</subject><subject>Statistical methods</subject><subject>Stochastic models</subject><subject>Stock market indexes</subject><subject>Volatility</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi0sKwjAURYMgWLR7eOC4kCb9DkUUF9C5hDTVlNjUvFelrt4OXICje-Ccu2KRkDJNqkyIDYsRe865KEqR5zJizQEG8wakMGmagnILen1XSFbDyztF1lma4eFb48B3oBANwRistsMN1NCCJVxOs7Mf00KnNOGOrTvl0MS_3bL9-dQcL8kY_HMySNfeT2FY1FXwsq7SrC4L-V_1BdW1QSs</recordid><startdate>20160429</startdate><enddate>20160429</enddate><creator>Pruna, Radu T</creator><creator>Polukarov, Maria</creator><creator>Jennings, Nicholas R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160429</creationdate><title>A new structural stochastic volatility model of asset pricing and its stylized facts</title><author>Pruna, Radu T ; Polukarov, Maria ; Jennings, Nicholas R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20798149763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Clustering</topic><topic>Computer simulation</topic><topic>Economic models</topic><topic>Misalignment</topic><topic>Parameter estimation</topic><topic>Pricing</topic><topic>Statistical methods</topic><topic>Stochastic models</topic><topic>Stock market indexes</topic><topic>Volatility</topic><toplevel>online_resources</toplevel><creatorcontrib>Pruna, Radu T</creatorcontrib><creatorcontrib>Polukarov, Maria</creatorcontrib><creatorcontrib>Jennings, Nicholas R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pruna, Radu T</au><au>Polukarov, Maria</au><au>Jennings, Nicholas R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A new structural stochastic volatility model of asset pricing and its stylized facts</atitle><jtitle>arXiv.org</jtitle><date>2016-04-29</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Building on a prominent agent-based model, we present a new structural stochastic volatility asset pricing model of fundamentalists vs. chartists where the prices are determined based on excess demand. Specifically, this allows for modelling stochastic interactions between agents, based on a herding process corrected by a price misalignment, and incorporating strong noise components in the agents' demand. The model's parameters are estimated using the method of simulated moments, where the moments reflect the basic properties of the daily returns of a stock market index. In addition, for the first time we apply a (parametric) bootstrap method in a setting where the switching between strategies is modelled using a discrete choice approach. As we demonstrate, the resulting dynamics replicate a rich set of the stylized facts of the daily financial data including: heavy tails, volatility clustering, long memory in absolute returns, as well as the absence of autocorrelation in raw returns, volatility-volume correlations, aggregate Gaussianity, concave price impact and extreme price events.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2079814976 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Clustering Computer simulation Economic models Misalignment Parameter estimation Pricing Statistical methods Stochastic models Stock market indexes Volatility |
title | A new structural stochastic volatility model of asset pricing and its stylized facts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20new%20structural%20stochastic%20volatility%20model%20of%20asset%20pricing%20and%20its%20stylized%20facts&rft.jtitle=arXiv.org&rft.au=Pruna,%20Radu%20T&rft.date=2016-04-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079814976%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20798149763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2079814976&rft_id=info:pmid/&rfr_iscdi=true |