Loading…
PM J03338+3320: Long-Period Superhumps in Growing Phase Following a Separate Precursor Outburst
We observed the first-ever recorded outburst of PM J03338+3320, the cataclysmic variable selected by proper-motion survey. The outburst was composed of a precursor and the main superoutburst. The precursor outburst occurred at least 5 d before the maximum of the main superoutburst. Despite this sepa...
Saved in:
Published in: | arXiv.org 2016-04 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We observed the first-ever recorded outburst of PM J03338+3320, the cataclysmic variable selected by proper-motion survey. The outburst was composed of a precursor and the main superoutburst. The precursor outburst occurred at least 5 d before the maximum of the main superoutburst. Despite this separation, long-period superhumps were continuously seen between the precursor and main superoutburst. The period of these superhumps is longer than the orbital period by 6.0(1)% and can be interpreted to reflect the dynamical precession rate at the 3:1 resonance for a mass ratio of 0.172(4). These superhumps smoothly evolved into those in the main superoutburst. These observations provide the clearest evidence that the 3:1 resonance is triggered by the precursor outburst, even if it is well separated, and the resonance eventually causes the main superoutburst as predicted by the thermal-tidal instability model. The presence of superhumps well before the superoutburst cannot be explained by alternative models (the enhanced mass-transfer model and the pure thermal instability model) and the present observations give a clear support to the thermal-tidal instability model. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1604.01103 |