Loading…

A spectral hole memory for light at the single photon level

We demonstrate a solid state spin-wave optical memory based on stopped light in a spectral hole. A long lived narrow spectral hole is created by optical pumping in the inhomogeneous absorption profile of a Pr\(^{3+}\):Y\(_2\)SiO\(_5\) crystal. Optical pulses sent through the spectral hole experience...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-04
Main Authors: Kutlu Kutluer, Pascual-Winter, María Florencia, Dajczgewand, Julian, Ledingham, Partick M, Mazzera, Margherita, Chanelière, Thierry, de Riedmatten, Hugues
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kutlu Kutluer
Pascual-Winter, María Florencia
Dajczgewand, Julian
Ledingham, Partick M
Mazzera, Margherita
Chanelière, Thierry
de Riedmatten, Hugues
description We demonstrate a solid state spin-wave optical memory based on stopped light in a spectral hole. A long lived narrow spectral hole is created by optical pumping in the inhomogeneous absorption profile of a Pr\(^{3+}\):Y\(_2\)SiO\(_5\) crystal. Optical pulses sent through the spectral hole experience a strong reduction of their group velocity and are spatially compressed in the crystal. A short Raman pulse transfers the optical excitation to the spin state before the light pulse exits the crystal, effectively stopping the light. After a controllable delay, a second Raman pulse is sent, which leads to the emission of the stored photons. We reach storage and retrieval efficiencies for bright pulses of up to \(39\,\%\) in a \(5 \,\mathrm{mm}\)-long crystal. We also show that our device works at the single photon level by storing and retrieving \(3\,\mathrm{\mu s}\)-long weak coherent pulses with efficiencies up to \(31\,\%\), demonstrating the most efficient spin-wave solid state optical memory at the single-photon level so far. We reach an unconditional noise level of \((9\pm1)\times 10^{-3}\) photons per pulse in a detection window of \(4\,\mathrm{\mu s}\) leading to a signal-to-noise ratio of \(33 \pm 4\) for an average input photon number of 1, making our device promising for long-lived storage of non-classical light.
doi_str_mv 10.48550/arxiv.1509.03145
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080026130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080026130</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-9b6a53d92995832708c1f29e4e1198f32c8aade0bec6dd6b88d455fa1fec8c463</originalsourceid><addsrcrecordid>eNotj8tqwzAUBUWh0JDmA7oTdG336uVIdBVCXxDoJvsgy1exg2K5khLav29KszqLgRkOIQ8MaqmVgiebvodzzRSYGgST6obMuBCs0pLzO7LI-QAAvFlypcSMPK9ontCVZAPtY0B6xGNMP9THRMOw7wu1hZYeaR7G_QVPfSxxpAHPGO7Jrbch4-K6c7J9fdmu36vN59vHerWprOJQmbaxSnSGG6O04EvQjnluUCJjRnvBnba2Q2jRNV3XtFp3UilvmUennWzEnDz-a6cUv06Yy-4QT2m8FHcc9N8XJkD8AmdrSLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080026130</pqid></control><display><type>article</type><title>A spectral hole memory for light at the single photon level</title><source>Access via ProQuest (Open Access)</source><creator>Kutlu Kutluer ; Pascual-Winter, María Florencia ; Dajczgewand, Julian ; Ledingham, Partick M ; Mazzera, Margherita ; Chanelière, Thierry ; de Riedmatten, Hugues</creator><creatorcontrib>Kutlu Kutluer ; Pascual-Winter, María Florencia ; Dajczgewand, Julian ; Ledingham, Partick M ; Mazzera, Margherita ; Chanelière, Thierry ; de Riedmatten, Hugues</creatorcontrib><description>We demonstrate a solid state spin-wave optical memory based on stopped light in a spectral hole. A long lived narrow spectral hole is created by optical pumping in the inhomogeneous absorption profile of a Pr\(^{3+}\):Y\(_2\)SiO\(_5\) crystal. Optical pulses sent through the spectral hole experience a strong reduction of their group velocity and are spatially compressed in the crystal. A short Raman pulse transfers the optical excitation to the spin state before the light pulse exits the crystal, effectively stopping the light. After a controllable delay, a second Raman pulse is sent, which leads to the emission of the stored photons. We reach storage and retrieval efficiencies for bright pulses of up to \(39\,\%\) in a \(5 \,\mathrm{mm}\)-long crystal. We also show that our device works at the single photon level by storing and retrieving \(3\,\mathrm{\mu s}\)-long weak coherent pulses with efficiencies up to \(31\,\%\), demonstrating the most efficient spin-wave solid state optical memory at the single-photon level so far. We reach an unconditional noise level of \((9\pm1)\times 10^{-3}\) photons per pulse in a detection window of \(4\,\mathrm{\mu s}\) leading to a signal-to-noise ratio of \(33 \pm 4\) for an average input photon number of 1, making our device promising for long-lived storage of non-classical light.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1509.03145</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Crystals ; Group velocity ; Optical memory (data storage) ; Optical pulses ; Optical pumping ; Photons ; Quantum theory ; Solid state ; Spectra</subject><ispartof>arXiv.org, 2016-04</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080026130?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Kutlu Kutluer</creatorcontrib><creatorcontrib>Pascual-Winter, María Florencia</creatorcontrib><creatorcontrib>Dajczgewand, Julian</creatorcontrib><creatorcontrib>Ledingham, Partick M</creatorcontrib><creatorcontrib>Mazzera, Margherita</creatorcontrib><creatorcontrib>Chanelière, Thierry</creatorcontrib><creatorcontrib>de Riedmatten, Hugues</creatorcontrib><title>A spectral hole memory for light at the single photon level</title><title>arXiv.org</title><description>We demonstrate a solid state spin-wave optical memory based on stopped light in a spectral hole. A long lived narrow spectral hole is created by optical pumping in the inhomogeneous absorption profile of a Pr\(^{3+}\):Y\(_2\)SiO\(_5\) crystal. Optical pulses sent through the spectral hole experience a strong reduction of their group velocity and are spatially compressed in the crystal. A short Raman pulse transfers the optical excitation to the spin state before the light pulse exits the crystal, effectively stopping the light. After a controllable delay, a second Raman pulse is sent, which leads to the emission of the stored photons. We reach storage and retrieval efficiencies for bright pulses of up to \(39\,\%\) in a \(5 \,\mathrm{mm}\)-long crystal. We also show that our device works at the single photon level by storing and retrieving \(3\,\mathrm{\mu s}\)-long weak coherent pulses with efficiencies up to \(31\,\%\), demonstrating the most efficient spin-wave solid state optical memory at the single-photon level so far. We reach an unconditional noise level of \((9\pm1)\times 10^{-3}\) photons per pulse in a detection window of \(4\,\mathrm{\mu s}\) leading to a signal-to-noise ratio of \(33 \pm 4\) for an average input photon number of 1, making our device promising for long-lived storage of non-classical light.</description><subject>Crystals</subject><subject>Group velocity</subject><subject>Optical memory (data storage)</subject><subject>Optical pulses</subject><subject>Optical pumping</subject><subject>Photons</subject><subject>Quantum theory</subject><subject>Solid state</subject><subject>Spectra</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj8tqwzAUBUWh0JDmA7oTdG336uVIdBVCXxDoJvsgy1exg2K5khLav29KszqLgRkOIQ8MaqmVgiebvodzzRSYGgST6obMuBCs0pLzO7LI-QAAvFlypcSMPK9ontCVZAPtY0B6xGNMP9THRMOw7wu1hZYeaR7G_QVPfSxxpAHPGO7Jrbch4-K6c7J9fdmu36vN59vHerWprOJQmbaxSnSGG6O04EvQjnluUCJjRnvBnba2Q2jRNV3XtFp3UilvmUennWzEnDz-a6cUv06Yy-4QT2m8FHcc9N8XJkD8AmdrSLs</recordid><startdate>20160427</startdate><enddate>20160427</enddate><creator>Kutlu Kutluer</creator><creator>Pascual-Winter, María Florencia</creator><creator>Dajczgewand, Julian</creator><creator>Ledingham, Partick M</creator><creator>Mazzera, Margherita</creator><creator>Chanelière, Thierry</creator><creator>de Riedmatten, Hugues</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20160427</creationdate><title>A spectral hole memory for light at the single photon level</title><author>Kutlu Kutluer ; Pascual-Winter, María Florencia ; Dajczgewand, Julian ; Ledingham, Partick M ; Mazzera, Margherita ; Chanelière, Thierry ; de Riedmatten, Hugues</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-9b6a53d92995832708c1f29e4e1198f32c8aade0bec6dd6b88d455fa1fec8c463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Crystals</topic><topic>Group velocity</topic><topic>Optical memory (data storage)</topic><topic>Optical pulses</topic><topic>Optical pumping</topic><topic>Photons</topic><topic>Quantum theory</topic><topic>Solid state</topic><topic>Spectra</topic><toplevel>online_resources</toplevel><creatorcontrib>Kutlu Kutluer</creatorcontrib><creatorcontrib>Pascual-Winter, María Florencia</creatorcontrib><creatorcontrib>Dajczgewand, Julian</creatorcontrib><creatorcontrib>Ledingham, Partick M</creatorcontrib><creatorcontrib>Mazzera, Margherita</creatorcontrib><creatorcontrib>Chanelière, Thierry</creatorcontrib><creatorcontrib>de Riedmatten, Hugues</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutlu Kutluer</au><au>Pascual-Winter, María Florencia</au><au>Dajczgewand, Julian</au><au>Ledingham, Partick M</au><au>Mazzera, Margherita</au><au>Chanelière, Thierry</au><au>de Riedmatten, Hugues</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spectral hole memory for light at the single photon level</atitle><jtitle>arXiv.org</jtitle><date>2016-04-27</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We demonstrate a solid state spin-wave optical memory based on stopped light in a spectral hole. A long lived narrow spectral hole is created by optical pumping in the inhomogeneous absorption profile of a Pr\(^{3+}\):Y\(_2\)SiO\(_5\) crystal. Optical pulses sent through the spectral hole experience a strong reduction of their group velocity and are spatially compressed in the crystal. A short Raman pulse transfers the optical excitation to the spin state before the light pulse exits the crystal, effectively stopping the light. After a controllable delay, a second Raman pulse is sent, which leads to the emission of the stored photons. We reach storage and retrieval efficiencies for bright pulses of up to \(39\,\%\) in a \(5 \,\mathrm{mm}\)-long crystal. We also show that our device works at the single photon level by storing and retrieving \(3\,\mathrm{\mu s}\)-long weak coherent pulses with efficiencies up to \(31\,\%\), demonstrating the most efficient spin-wave solid state optical memory at the single-photon level so far. We reach an unconditional noise level of \((9\pm1)\times 10^{-3}\) photons per pulse in a detection window of \(4\,\mathrm{\mu s}\) leading to a signal-to-noise ratio of \(33 \pm 4\) for an average input photon number of 1, making our device promising for long-lived storage of non-classical light.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1509.03145</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080026130
source Access via ProQuest (Open Access)
subjects Crystals
Group velocity
Optical memory (data storage)
Optical pulses
Optical pumping
Photons
Quantum theory
Solid state
Spectra
title A spectral hole memory for light at the single photon level
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spectral%20hole%20memory%20for%20light%20at%20the%20single%20photon%20level&rft.jtitle=arXiv.org&rft.au=Kutlu%20Kutluer&rft.date=2016-04-27&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1509.03145&rft_dat=%3Cproquest%3E2080026130%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-9b6a53d92995832708c1f29e4e1198f32c8aade0bec6dd6b88d455fa1fec8c463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080026130&rft_id=info:pmid/&rfr_iscdi=true