Loading…

Molecular and atomic gas along and across the main sequence of star-forming galaxies

We use spectra from the ALFALFA, GASS and COLD GASS surveys to quantify variations in the mean atomic and molecular gas mass fractions throughout the SFR-M* plane and along the main sequence (MS) of star-forming galaxies. Although galaxies well below the MS tend to be undetected in the Arecibo and I...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-07
Main Authors: Saintonge, A, Catinella, B, Cortese, L, Genzel, R, Giovanelli, R, Haynes, M P, Janowiecki, S, Kramer, C, Lutz, K A, Schiminovich, D, Tacconi, L J, Wuyts, S, Accurso, G
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We use spectra from the ALFALFA, GASS and COLD GASS surveys to quantify variations in the mean atomic and molecular gas mass fractions throughout the SFR-M* plane and along the main sequence (MS) of star-forming galaxies. Although galaxies well below the MS tend to be undetected in the Arecibo and IRAM observations, reliable mean atomic and molecular gas fractions can be obtained through a spectral stacking technique. We find that the position of galaxies in the SFR-M* plane can be explained mostly by their global cold gas reservoirs as observed in the HI line, with in addition systematic variations in the molecular-to-atomic ratio and star formation efficiency. When looking at galaxies within +/-0.4 dex of the MS, we find that as stellar mass increases, both atomic and molecular gas mass fractions decrease, stellar bulges become more prominent, and the mean stellar ages increase. Both star formation efficiency and molecular-to-atomic ratios vary little for massive main sequence galaxies, indicating that the flattening of the MS is due to the global decrease of the cold gas reservoirs of galaxies rather than to bottlenecks in the process of converting cold atomic gas to stars.
ISSN:2331-8422
DOI:10.48550/arxiv.1607.05289