Loading…
Adaptive Filter for Automatic Identification of Multiple Faults in a Noisy OTDR Profile
We present a novel methodology able to distinguish meaningful level shifts from typical signal fluctuations. A two-stage regularization filtering can accurately identify the location of the significant level-shifts with an efficient parameter-free algorithm. The developed methodology demands low com...
Saved in:
Published in: | arXiv.org 2016-02 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jean Pierre von der Weid Souto, Mario H Garcia, Joaquim D Amaral, Gustavo C |
description | We present a novel methodology able to distinguish meaningful level shifts from typical signal fluctuations. A two-stage regularization filtering can accurately identify the location of the significant level-shifts with an efficient parameter-free algorithm. The developed methodology demands low computational effort and can easily be embedded in a dedicated processing unit. Our case studies compare the new methodology with current available ones and show that it is the most adequate technique for fast detection of multiple unknown level-shifts in a noisy OTDR profile. |
doi_str_mv | 10.48550/arxiv.1602.04379 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080064290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080064290</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-8b2cc813efba33f67b7d3dfa1b65c32c8d6faa79370fb0bc92f170783290c1173</originalsourceid><addsrcrecordid>eNotjV1LwzAYhYMgOOZ-gHcBrzvf5G0-elmm08F0IgUvR5omkFGb2qZD_72FeXWeAw_nEHLHYJ1rIeDBDD_hvGYS-BpyVMUVWXBElumc8xuyGscTAHCpuBC4IJ9lY_oUzo5uQ5vcQH0caDml-GVSsHTXuC4FH-zcYkejp69Tm0Lfzr6ZaaSho4a-xTD-0kP1-EHfh-hD627JtTft6Fb_uSTV9qnavGT7w_NuU-4zIzhkuubWaobO1wbRS1WrBhtvWC2FRW51I70xqkAFvobaFtwzBUojL8AypnBJ7i-z_RC_Jzem4ylOQzc_HjloAJnPJv4BVjxSiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080064290</pqid></control><display><type>article</type><title>Adaptive Filter for Automatic Identification of Multiple Faults in a Noisy OTDR Profile</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Jean Pierre von der Weid ; Souto, Mario H ; Garcia, Joaquim D ; Amaral, Gustavo C</creator><creatorcontrib>Jean Pierre von der Weid ; Souto, Mario H ; Garcia, Joaquim D ; Amaral, Gustavo C</creatorcontrib><description>We present a novel methodology able to distinguish meaningful level shifts from typical signal fluctuations. A two-stage regularization filtering can accurately identify the location of the significant level-shifts with an efficient parameter-free algorithm. The developed methodology demands low computational effort and can easily be embedded in a dedicated processing unit. Our case studies compare the new methodology with current available ones and show that it is the most adequate technique for fast detection of multiple unknown level-shifts in a noisy OTDR profile.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1602.04379</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptive filters ; Algorithms ; Fault detection ; Methodology ; Parameter identification ; Regularization ; Variations</subject><ispartof>arXiv.org, 2016-02</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080064290?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Jean Pierre von der Weid</creatorcontrib><creatorcontrib>Souto, Mario H</creatorcontrib><creatorcontrib>Garcia, Joaquim D</creatorcontrib><creatorcontrib>Amaral, Gustavo C</creatorcontrib><title>Adaptive Filter for Automatic Identification of Multiple Faults in a Noisy OTDR Profile</title><title>arXiv.org</title><description>We present a novel methodology able to distinguish meaningful level shifts from typical signal fluctuations. A two-stage regularization filtering can accurately identify the location of the significant level-shifts with an efficient parameter-free algorithm. The developed methodology demands low computational effort and can easily be embedded in a dedicated processing unit. Our case studies compare the new methodology with current available ones and show that it is the most adequate technique for fast detection of multiple unknown level-shifts in a noisy OTDR profile.</description><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Fault detection</subject><subject>Methodology</subject><subject>Parameter identification</subject><subject>Regularization</subject><subject>Variations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjV1LwzAYhYMgOOZ-gHcBrzvf5G0-elmm08F0IgUvR5omkFGb2qZD_72FeXWeAw_nEHLHYJ1rIeDBDD_hvGYS-BpyVMUVWXBElumc8xuyGscTAHCpuBC4IJ9lY_oUzo5uQ5vcQH0caDml-GVSsHTXuC4FH-zcYkejp69Tm0Lfzr6ZaaSho4a-xTD-0kP1-EHfh-hD627JtTft6Fb_uSTV9qnavGT7w_NuU-4zIzhkuubWaobO1wbRS1WrBhtvWC2FRW51I70xqkAFvobaFtwzBUojL8AypnBJ7i-z_RC_Jzem4ylOQzc_HjloAJnPJv4BVjxSiQ</recordid><startdate>20160213</startdate><enddate>20160213</enddate><creator>Jean Pierre von der Weid</creator><creator>Souto, Mario H</creator><creator>Garcia, Joaquim D</creator><creator>Amaral, Gustavo C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160213</creationdate><title>Adaptive Filter for Automatic Identification of Multiple Faults in a Noisy OTDR Profile</title><author>Jean Pierre von der Weid ; Souto, Mario H ; Garcia, Joaquim D ; Amaral, Gustavo C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-8b2cc813efba33f67b7d3dfa1b65c32c8d6faa79370fb0bc92f170783290c1173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Fault detection</topic><topic>Methodology</topic><topic>Parameter identification</topic><topic>Regularization</topic><topic>Variations</topic><toplevel>online_resources</toplevel><creatorcontrib>Jean Pierre von der Weid</creatorcontrib><creatorcontrib>Souto, Mario H</creatorcontrib><creatorcontrib>Garcia, Joaquim D</creatorcontrib><creatorcontrib>Amaral, Gustavo C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jean Pierre von der Weid</au><au>Souto, Mario H</au><au>Garcia, Joaquim D</au><au>Amaral, Gustavo C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Filter for Automatic Identification of Multiple Faults in a Noisy OTDR Profile</atitle><jtitle>arXiv.org</jtitle><date>2016-02-13</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We present a novel methodology able to distinguish meaningful level shifts from typical signal fluctuations. A two-stage regularization filtering can accurately identify the location of the significant level-shifts with an efficient parameter-free algorithm. The developed methodology demands low computational effort and can easily be embedded in a dedicated processing unit. Our case studies compare the new methodology with current available ones and show that it is the most adequate technique for fast detection of multiple unknown level-shifts in a noisy OTDR profile.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1602.04379</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080064290 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Adaptive filters Algorithms Fault detection Methodology Parameter identification Regularization Variations |
title | Adaptive Filter for Automatic Identification of Multiple Faults in a Noisy OTDR Profile |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Filter%20for%20Automatic%20Identification%20of%20Multiple%20Faults%20in%20a%20Noisy%20OTDR%20Profile&rft.jtitle=arXiv.org&rft.au=Jean%20Pierre%20von%20der%20Weid&rft.date=2016-02-13&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1602.04379&rft_dat=%3Cproquest%3E2080064290%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-8b2cc813efba33f67b7d3dfa1b65c32c8d6faa79370fb0bc92f170783290c1173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080064290&rft_id=info:pmid/&rfr_iscdi=true |