Loading…

A mechanical autonomous stochastic heat engine

Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonst...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-01
Main Authors: Serra-Garcia, Marc, Foehr, André, Molerón, Miguel, Lydon, Joseph, Chong, Christopher, Daraio, Chiara
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Serra-Garcia, Marc
Foehr, André
Molerón, Miguel
Lydon, Joseph
Chong, Christopher
Daraio, Chiara
description Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using e.g., thermal cycles implemented in optical traps. However, the recent demonstrations of stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle, and consume more energy than they produce. This Report presents a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.
doi_str_mv 10.48550/arxiv.1601.07547
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080138466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080138466</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-31d935862b8cbc92fe43a763d49d4d6fb0914ed07068aa83efe99154afe6a9233</originalsourceid><addsrcrecordid>eNotjstqwzAQRUWh0JDmA7oTZG139LS0DKEvCGSTfRjbo8QhkVpLLv38GtrVhbM45zL2JKDWzhh4xvFn-K6FBVFDY3RzxxZSKVE5LeUDW-V8AQBpG2mMWrB6w2_UnTEOHV45TiXFdEtT5rmkGecydPxMWDjF0xDpkd0HvGZa_e-SHV5fDtv3ard_-9hudhUaaSsleq-Ms7J1Xdt5GUgrbKzqte91b0MLXmjqoQHrEJ2iQN4LozGQRT-_XbL1n_ZzTF8T5XK8pGmMc_EowYFQTlurfgGA-UQn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080138466</pqid></control><display><type>article</type><title>A mechanical autonomous stochastic heat engine</title><source>Publicly Available Content Database</source><creator>Serra-Garcia, Marc ; Foehr, André ; Molerón, Miguel ; Lydon, Joseph ; Chong, Christopher ; Daraio, Chiara</creator><creatorcontrib>Serra-Garcia, Marc ; Foehr, André ; Molerón, Miguel ; Lydon, Joseph ; Chong, Christopher ; Daraio, Chiara</creatorcontrib><description>Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using e.g., thermal cycles implemented in optical traps. However, the recent demonstrations of stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle, and consume more energy than they produce. This Report presents a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1601.07547</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Heat engines ; Optical traps ; Random excitation ; Thermal conductivity ; Transport properties ; Variations</subject><ispartof>arXiv.org, 2016-01</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080138466?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Serra-Garcia, Marc</creatorcontrib><creatorcontrib>Foehr, André</creatorcontrib><creatorcontrib>Molerón, Miguel</creatorcontrib><creatorcontrib>Lydon, Joseph</creatorcontrib><creatorcontrib>Chong, Christopher</creatorcontrib><creatorcontrib>Daraio, Chiara</creatorcontrib><title>A mechanical autonomous stochastic heat engine</title><title>arXiv.org</title><description>Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using e.g., thermal cycles implemented in optical traps. However, the recent demonstrations of stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle, and consume more energy than they produce. This Report presents a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.</description><subject>Heat engines</subject><subject>Optical traps</subject><subject>Random excitation</subject><subject>Thermal conductivity</subject><subject>Transport properties</subject><subject>Variations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstqwzAQRUWh0JDmA7oTZG139LS0DKEvCGSTfRjbo8QhkVpLLv38GtrVhbM45zL2JKDWzhh4xvFn-K6FBVFDY3RzxxZSKVE5LeUDW-V8AQBpG2mMWrB6w2_UnTEOHV45TiXFdEtT5rmkGecydPxMWDjF0xDpkd0HvGZa_e-SHV5fDtv3ard_-9hudhUaaSsleq-Ms7J1Xdt5GUgrbKzqte91b0MLXmjqoQHrEJ2iQN4LozGQRT-_XbL1n_ZzTF8T5XK8pGmMc_EowYFQTlurfgGA-UQn</recordid><startdate>20160127</startdate><enddate>20160127</enddate><creator>Serra-Garcia, Marc</creator><creator>Foehr, André</creator><creator>Molerón, Miguel</creator><creator>Lydon, Joseph</creator><creator>Chong, Christopher</creator><creator>Daraio, Chiara</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160127</creationdate><title>A mechanical autonomous stochastic heat engine</title><author>Serra-Garcia, Marc ; Foehr, André ; Molerón, Miguel ; Lydon, Joseph ; Chong, Christopher ; Daraio, Chiara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-31d935862b8cbc92fe43a763d49d4d6fb0914ed07068aa83efe99154afe6a9233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Heat engines</topic><topic>Optical traps</topic><topic>Random excitation</topic><topic>Thermal conductivity</topic><topic>Transport properties</topic><topic>Variations</topic><toplevel>online_resources</toplevel><creatorcontrib>Serra-Garcia, Marc</creatorcontrib><creatorcontrib>Foehr, André</creatorcontrib><creatorcontrib>Molerón, Miguel</creatorcontrib><creatorcontrib>Lydon, Joseph</creatorcontrib><creatorcontrib>Chong, Christopher</creatorcontrib><creatorcontrib>Daraio, Chiara</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serra-Garcia, Marc</au><au>Foehr, André</au><au>Molerón, Miguel</au><au>Lydon, Joseph</au><au>Chong, Christopher</au><au>Daraio, Chiara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mechanical autonomous stochastic heat engine</atitle><jtitle>arXiv.org</jtitle><date>2016-01-27</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using e.g., thermal cycles implemented in optical traps. However, the recent demonstrations of stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle, and consume more energy than they produce. This Report presents a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1601.07547</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080138466
source Publicly Available Content Database
subjects Heat engines
Optical traps
Random excitation
Thermal conductivity
Transport properties
Variations
title A mechanical autonomous stochastic heat engine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mechanical%20autonomous%20stochastic%20heat%20engine&rft.jtitle=arXiv.org&rft.au=Serra-Garcia,%20Marc&rft.date=2016-01-27&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1601.07547&rft_dat=%3Cproquest%3E2080138466%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-31d935862b8cbc92fe43a763d49d4d6fb0914ed07068aa83efe99154afe6a9233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080138466&rft_id=info:pmid/&rfr_iscdi=true