Loading…

A Bayesian analysis of the 69 highest energy cosmic rays detected by the Pierre Auger Observatory

The origins of ultra-high energy cosmic rays (UHECRs) remain an open question. Several attempts have been made to cross-correlate the arrival directions of the UHECRs with catalogs of potential sources, but no definite conclusion has been reached. We report a Bayesian analysis of the 69 events from...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-01
Main Authors: Khanin, Alexander, Mortlock, Daniel J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The origins of ultra-high energy cosmic rays (UHECRs) remain an open question. Several attempts have been made to cross-correlate the arrival directions of the UHECRs with catalogs of potential sources, but no definite conclusion has been reached. We report a Bayesian analysis of the 69 events from the Pierre Auger Observatory (PAO), that aims to determine the fraction of the UHECRs that originate from known AGNs in the Veron-Cety & Veron (VCV) catalog, as well as AGNs detected with the Swift Burst Alert Telescope (Swift-BAT), galaxies from the 2MASS Redshift Survey (2MRS), and an additional volume-limited sample of 17 nearby AGNs. The study makes use of a multi-level Bayesian model of UHECR injection, propagation and detection. We find that for reasonable ranges of prior parameters, the Bayes factors disfavour a purely isotropic model. For fiducial values of the model parameters, we report 68% credible intervals for the fraction of source originating UHECRs of 0.09+0.05-0.04, 0.25+0.09-0.08, 0.24+0.12-0.10, and 0.08+0.04-0.03 for the VCV, Swift-BAT and 2MRS catalogs, and the sample of 17 AGNs, respectively.
ISSN:2331-8422
DOI:10.48550/arxiv.1601.02305