Loading…
Fundamental Gates for a Strongly Correlated Two-Electron Quantum Ring
We demonstrate that conditional as well as unconditional basic operations which are prerequisite for universal quantum gates can be performed with almost 100% fidelity within a strongly interacting two-electron quantum ring. Both sets of operations are based on a quantum control algorithm that optim...
Saved in:
Published in: | arXiv.org 2010-04 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate that conditional as well as unconditional basic operations which are prerequisite for universal quantum gates can be performed with almost 100% fidelity within a strongly interacting two-electron quantum ring. Both sets of operations are based on a quantum control algorithm that optimizes a driving electromagnetic pulse for a given quantum gate. The demonstrated transitions occur on a time scale much shorter than typical decoherence times of the system. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1004.4126 |