Loading…

RhoanaNet Pipeline: Dense Automatic Neural Annotation

Reconstructing a synaptic wiring diagram, or connectome, from electron microscopy (EM) images of brain tissue currently requires many hours of manual annotation or proofreading (Kasthuri and Lichtman, 2010; Lichtman and Sanes, 2008; Seung, 2009). The desire to reconstruct ever larger and more comple...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-11
Main Authors: Knowles-Barley, Seymour, Kaynig, Verena, Jones, Thouis Ray, Wilson, Alyssa, Morgan, Joshua, Lee, Dongil, Berger, Daniel, Narayanan Kasthuri, Lichtman, Jeff W, Pfister, Hanspeter
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Knowles-Barley, Seymour
Kaynig, Verena
Jones, Thouis Ray
Wilson, Alyssa
Morgan, Joshua
Lee, Dongil
Berger, Daniel
Narayanan Kasthuri
Lichtman, Jeff W
Pfister, Hanspeter
description Reconstructing a synaptic wiring diagram, or connectome, from electron microscopy (EM) images of brain tissue currently requires many hours of manual annotation or proofreading (Kasthuri and Lichtman, 2010; Lichtman and Sanes, 2008; Seung, 2009). The desire to reconstruct ever larger and more complex networks has pushed the collection of ever larger EM datasets. A cubic millimeter of raw imaging data would take up 1 PB of storage and present an annotation project that would be impractical without relying heavily on automatic segmentation methods. The RhoanaNet image processing pipeline was developed to automatically segment large volumes of EM data and ease the burden of manual proofreading and annotation. Based on (Kaynig et al., 2015), we updated every stage of the software pipeline to provide better throughput performance and higher quality segmentation results. We used state of the art deep learning techniques to generate improved membrane probability maps, and Gala (Nunez-Iglesias et al., 2014) was used to agglomerate 2D segments into 3D objects. We applied the RhoanaNet pipeline to four densely annotated EM datasets, two from mouse cortex, one from cerebellum and one from mouse lateral geniculate nucleus (LGN). All training and test data is made available for benchmark comparisons. The best segmentation results obtained gave \(V^\text{Info}_\text{F-score}\) scores of 0.9054 and 09182 for the cortex datasets, 0.9438 for LGN, and 0.9150 for Cerebellum. The RhoanaNet pipeline is open source software. All source code, training data, test data, and annotations for all four benchmark datasets are available at www.rhoana.org.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080324559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080324559</sourcerecordid><originalsourceid>FETCH-proquest_journals_20803245593</originalsourceid><addsrcrecordid>eNqNissKwjAQAIMgWLT_EPBciJtGq7fiA09FpPcSZMWUulvz-H978AM8DczMTGSg9aaoSoCFyEPolVKw3YExOhPm_mJLtsEob27EwREe5AkpoKxT5LeN7iEbTN4OsibiOAmmlZg_7RAw_3Ep1pdze7wWo-dPwhC7npOnKXWgKqWhNGav_7u-arU0rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080324559</pqid></control><display><type>article</type><title>RhoanaNet Pipeline: Dense Automatic Neural Annotation</title><source>Publicly Available Content Database</source><creator>Knowles-Barley, Seymour ; Kaynig, Verena ; Jones, Thouis Ray ; Wilson, Alyssa ; Morgan, Joshua ; Lee, Dongil ; Berger, Daniel ; Narayanan Kasthuri ; Lichtman, Jeff W ; Pfister, Hanspeter</creator><creatorcontrib>Knowles-Barley, Seymour ; Kaynig, Verena ; Jones, Thouis Ray ; Wilson, Alyssa ; Morgan, Joshua ; Lee, Dongil ; Berger, Daniel ; Narayanan Kasthuri ; Lichtman, Jeff W ; Pfister, Hanspeter</creatorcontrib><description>Reconstructing a synaptic wiring diagram, or connectome, from electron microscopy (EM) images of brain tissue currently requires many hours of manual annotation or proofreading (Kasthuri and Lichtman, 2010; Lichtman and Sanes, 2008; Seung, 2009). The desire to reconstruct ever larger and more complex networks has pushed the collection of ever larger EM datasets. A cubic millimeter of raw imaging data would take up 1 PB of storage and present an annotation project that would be impractical without relying heavily on automatic segmentation methods. The RhoanaNet image processing pipeline was developed to automatically segment large volumes of EM data and ease the burden of manual proofreading and annotation. Based on (Kaynig et al., 2015), we updated every stage of the software pipeline to provide better throughput performance and higher quality segmentation results. We used state of the art deep learning techniques to generate improved membrane probability maps, and Gala (Nunez-Iglesias et al., 2014) was used to agglomerate 2D segments into 3D objects. We applied the RhoanaNet pipeline to four densely annotated EM datasets, two from mouse cortex, one from cerebellum and one from mouse lateral geniculate nucleus (LGN). All training and test data is made available for benchmark comparisons. The best segmentation results obtained gave \(V^\text{Info}_\text{F-score}\) scores of 0.9054 and 09182 for the cortex datasets, 0.9438 for LGN, and 0.9150 for Cerebellum. The RhoanaNet pipeline is open source software. All source code, training data, test data, and annotations for all four benchmark datasets are available at www.rhoana.org.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Benchmarks ; Brain ; Cerebellum ; Datasets ; Image processing ; Image reconstruction ; Image segmentation ; Machine learning ; Open source software ; Software ; Source code ; Training ; Upgrading ; Wiring</subject><ispartof>arXiv.org, 2016-11</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080324559?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Knowles-Barley, Seymour</creatorcontrib><creatorcontrib>Kaynig, Verena</creatorcontrib><creatorcontrib>Jones, Thouis Ray</creatorcontrib><creatorcontrib>Wilson, Alyssa</creatorcontrib><creatorcontrib>Morgan, Joshua</creatorcontrib><creatorcontrib>Lee, Dongil</creatorcontrib><creatorcontrib>Berger, Daniel</creatorcontrib><creatorcontrib>Narayanan Kasthuri</creatorcontrib><creatorcontrib>Lichtman, Jeff W</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><title>RhoanaNet Pipeline: Dense Automatic Neural Annotation</title><title>arXiv.org</title><description>Reconstructing a synaptic wiring diagram, or connectome, from electron microscopy (EM) images of brain tissue currently requires many hours of manual annotation or proofreading (Kasthuri and Lichtman, 2010; Lichtman and Sanes, 2008; Seung, 2009). The desire to reconstruct ever larger and more complex networks has pushed the collection of ever larger EM datasets. A cubic millimeter of raw imaging data would take up 1 PB of storage and present an annotation project that would be impractical without relying heavily on automatic segmentation methods. The RhoanaNet image processing pipeline was developed to automatically segment large volumes of EM data and ease the burden of manual proofreading and annotation. Based on (Kaynig et al., 2015), we updated every stage of the software pipeline to provide better throughput performance and higher quality segmentation results. We used state of the art deep learning techniques to generate improved membrane probability maps, and Gala (Nunez-Iglesias et al., 2014) was used to agglomerate 2D segments into 3D objects. We applied the RhoanaNet pipeline to four densely annotated EM datasets, two from mouse cortex, one from cerebellum and one from mouse lateral geniculate nucleus (LGN). All training and test data is made available for benchmark comparisons. The best segmentation results obtained gave \(V^\text{Info}_\text{F-score}\) scores of 0.9054 and 09182 for the cortex datasets, 0.9438 for LGN, and 0.9150 for Cerebellum. The RhoanaNet pipeline is open source software. All source code, training data, test data, and annotations for all four benchmark datasets are available at www.rhoana.org.</description><subject>Annotations</subject><subject>Benchmarks</subject><subject>Brain</subject><subject>Cerebellum</subject><subject>Datasets</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Open source software</subject><subject>Software</subject><subject>Source code</subject><subject>Training</subject><subject>Upgrading</subject><subject>Wiring</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNissKwjAQAIMgWLT_EPBciJtGq7fiA09FpPcSZMWUulvz-H978AM8DczMTGSg9aaoSoCFyEPolVKw3YExOhPm_mJLtsEob27EwREe5AkpoKxT5LeN7iEbTN4OsibiOAmmlZg_7RAw_3Ep1pdze7wWo-dPwhC7npOnKXWgKqWhNGav_7u-arU0rg</recordid><startdate>20161121</startdate><enddate>20161121</enddate><creator>Knowles-Barley, Seymour</creator><creator>Kaynig, Verena</creator><creator>Jones, Thouis Ray</creator><creator>Wilson, Alyssa</creator><creator>Morgan, Joshua</creator><creator>Lee, Dongil</creator><creator>Berger, Daniel</creator><creator>Narayanan Kasthuri</creator><creator>Lichtman, Jeff W</creator><creator>Pfister, Hanspeter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161121</creationdate><title>RhoanaNet Pipeline: Dense Automatic Neural Annotation</title><author>Knowles-Barley, Seymour ; Kaynig, Verena ; Jones, Thouis Ray ; Wilson, Alyssa ; Morgan, Joshua ; Lee, Dongil ; Berger, Daniel ; Narayanan Kasthuri ; Lichtman, Jeff W ; Pfister, Hanspeter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20803245593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annotations</topic><topic>Benchmarks</topic><topic>Brain</topic><topic>Cerebellum</topic><topic>Datasets</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Open source software</topic><topic>Software</topic><topic>Source code</topic><topic>Training</topic><topic>Upgrading</topic><topic>Wiring</topic><toplevel>online_resources</toplevel><creatorcontrib>Knowles-Barley, Seymour</creatorcontrib><creatorcontrib>Kaynig, Verena</creatorcontrib><creatorcontrib>Jones, Thouis Ray</creatorcontrib><creatorcontrib>Wilson, Alyssa</creatorcontrib><creatorcontrib>Morgan, Joshua</creatorcontrib><creatorcontrib>Lee, Dongil</creatorcontrib><creatorcontrib>Berger, Daniel</creatorcontrib><creatorcontrib>Narayanan Kasthuri</creatorcontrib><creatorcontrib>Lichtman, Jeff W</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knowles-Barley, Seymour</au><au>Kaynig, Verena</au><au>Jones, Thouis Ray</au><au>Wilson, Alyssa</au><au>Morgan, Joshua</au><au>Lee, Dongil</au><au>Berger, Daniel</au><au>Narayanan Kasthuri</au><au>Lichtman, Jeff W</au><au>Pfister, Hanspeter</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>RhoanaNet Pipeline: Dense Automatic Neural Annotation</atitle><jtitle>arXiv.org</jtitle><date>2016-11-21</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Reconstructing a synaptic wiring diagram, or connectome, from electron microscopy (EM) images of brain tissue currently requires many hours of manual annotation or proofreading (Kasthuri and Lichtman, 2010; Lichtman and Sanes, 2008; Seung, 2009). The desire to reconstruct ever larger and more complex networks has pushed the collection of ever larger EM datasets. A cubic millimeter of raw imaging data would take up 1 PB of storage and present an annotation project that would be impractical without relying heavily on automatic segmentation methods. The RhoanaNet image processing pipeline was developed to automatically segment large volumes of EM data and ease the burden of manual proofreading and annotation. Based on (Kaynig et al., 2015), we updated every stage of the software pipeline to provide better throughput performance and higher quality segmentation results. We used state of the art deep learning techniques to generate improved membrane probability maps, and Gala (Nunez-Iglesias et al., 2014) was used to agglomerate 2D segments into 3D objects. We applied the RhoanaNet pipeline to four densely annotated EM datasets, two from mouse cortex, one from cerebellum and one from mouse lateral geniculate nucleus (LGN). All training and test data is made available for benchmark comparisons. The best segmentation results obtained gave \(V^\text{Info}_\text{F-score}\) scores of 0.9054 and 09182 for the cortex datasets, 0.9438 for LGN, and 0.9150 for Cerebellum. The RhoanaNet pipeline is open source software. All source code, training data, test data, and annotations for all four benchmark datasets are available at www.rhoana.org.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080324559
source Publicly Available Content Database
subjects Annotations
Benchmarks
Brain
Cerebellum
Datasets
Image processing
Image reconstruction
Image segmentation
Machine learning
Open source software
Software
Source code
Training
Upgrading
Wiring
title RhoanaNet Pipeline: Dense Automatic Neural Annotation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=RhoanaNet%20Pipeline:%20Dense%20Automatic%20Neural%20Annotation&rft.jtitle=arXiv.org&rft.au=Knowles-Barley,%20Seymour&rft.date=2016-11-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080324559%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20803245593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080324559&rft_id=info:pmid/&rfr_iscdi=true