Loading…

Complex Chern-Simons and Gribov

We explore a contact point between two distinct approaches to the confinment problem. We show that BLG-ABJM like theories generate gauge propagators with just the complex pole structure prescribed by the Gribov scenario for confinemnt. This structure, known as i-particles in Gribov-Zwanziger theorie...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-06
Main Authors: Amaral, M M, Lemes, V E R, Ventura, O S, Vilar, L C Q
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Amaral, M M
Lemes, V E R
Ventura, O S
Vilar, L C Q
description We explore a contact point between two distinct approaches to the confinment problem. We show that BLG-ABJM like theories generate gauge propagators with just the complex pole structure prescribed by the Gribov scenario for confinemnt. This structure, known as i-particles in Gribov-Zwanziger theories, effectively allows the definition of composite operators with a positive K\"{a}ll\'{e}n-Lehmann spectral representation for their two-point functions . Then, these operators satisfy the criteria to describe glue-ball condensates. We calculate the (first order) contribution to the two-point function of the gauge invariant condensate in an ABJM environment, showing its interpretation as a physical particle along K\"{a}ll\'{e}n-Lehmann. In the meantime, we argue for the necessity of absorbing Witten's work on holomorphic complex theories in order to settle the physical interpretation of this non-perturbative scenario.
doi_str_mv 10.48550/arxiv.1609.05093
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080355020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080355020</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-b66713635705b631818258a558109dacb980ce6efbcb5f52a542aa2a1e75088f3</originalsourceid><addsrcrecordid>eNotj8FqAjEQQEOhULF-QE8u9JztZGYnmz2WpbWC0EO9y2TN4opubFLFz6_Qnt7tPZ5STwbKyjHDi6TrcCmNhaYEhobu1ASJjHYV4oOa5bwHALQ1MtNEzdt4PB3CtWh3IY36azjGMRcybotFGny8PKr7Xg45zP45Vev3t3X7oVefi2X7utLCCNpbWxuyxDWwt2SccchOmJ2BZiudbxx0wYbed557RuEKRVBMqBmc62mqnv-0pxS_zyH_bPbxnMZbcYPggG5jCPQLQOs9PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080355020</pqid></control><display><type>article</type><title>Complex Chern-Simons and Gribov</title><source>Access via ProQuest (Open Access)</source><creator>Amaral, M M ; Lemes, V E R ; Ventura, O S ; Vilar, L C Q</creator><creatorcontrib>Amaral, M M ; Lemes, V E R ; Ventura, O S ; Vilar, L C Q</creatorcontrib><description>We explore a contact point between two distinct approaches to the confinment problem. We show that BLG-ABJM like theories generate gauge propagators with just the complex pole structure prescribed by the Gribov scenario for confinemnt. This structure, known as i-particles in Gribov-Zwanziger theories, effectively allows the definition of composite operators with a positive K\"{a}ll\'{e}n-Lehmann spectral representation for their two-point functions . Then, these operators satisfy the criteria to describe glue-ball condensates. We calculate the (first order) contribution to the two-point function of the gauge invariant condensate in an ABJM environment, showing its interpretation as a physical particle along K\"{a}ll\'{e}n-Lehmann. In the meantime, we argue for the necessity of absorbing Witten's work on holomorphic complex theories in order to settle the physical interpretation of this non-perturbative scenario.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1609.05093</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Condensates ; Mathematical analysis ; Operators (mathematics)</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080355020?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Amaral, M M</creatorcontrib><creatorcontrib>Lemes, V E R</creatorcontrib><creatorcontrib>Ventura, O S</creatorcontrib><creatorcontrib>Vilar, L C Q</creatorcontrib><title>Complex Chern-Simons and Gribov</title><title>arXiv.org</title><description>We explore a contact point between two distinct approaches to the confinment problem. We show that BLG-ABJM like theories generate gauge propagators with just the complex pole structure prescribed by the Gribov scenario for confinemnt. This structure, known as i-particles in Gribov-Zwanziger theories, effectively allows the definition of composite operators with a positive K\"{a}ll\'{e}n-Lehmann spectral representation for their two-point functions . Then, these operators satisfy the criteria to describe glue-ball condensates. We calculate the (first order) contribution to the two-point function of the gauge invariant condensate in an ABJM environment, showing its interpretation as a physical particle along K\"{a}ll\'{e}n-Lehmann. In the meantime, we argue for the necessity of absorbing Witten's work on holomorphic complex theories in order to settle the physical interpretation of this non-perturbative scenario.</description><subject>Condensates</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj8FqAjEQQEOhULF-QE8u9JztZGYnmz2WpbWC0EO9y2TN4opubFLFz6_Qnt7tPZ5STwbKyjHDi6TrcCmNhaYEhobu1ASJjHYV4oOa5bwHALQ1MtNEzdt4PB3CtWh3IY36azjGMRcybotFGny8PKr7Xg45zP45Vev3t3X7oVefi2X7utLCCNpbWxuyxDWwt2SccchOmJ2BZiudbxx0wYbed557RuEKRVBMqBmc62mqnv-0pxS_zyH_bPbxnMZbcYPggG5jCPQLQOs9PA</recordid><startdate>20200623</startdate><enddate>20200623</enddate><creator>Amaral, M M</creator><creator>Lemes, V E R</creator><creator>Ventura, O S</creator><creator>Vilar, L C Q</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200623</creationdate><title>Complex Chern-Simons and Gribov</title><author>Amaral, M M ; Lemes, V E R ; Ventura, O S ; Vilar, L C Q</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-b66713635705b631818258a558109dacb980ce6efbcb5f52a542aa2a1e75088f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Condensates</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Amaral, M M</creatorcontrib><creatorcontrib>Lemes, V E R</creatorcontrib><creatorcontrib>Ventura, O S</creatorcontrib><creatorcontrib>Vilar, L C Q</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amaral, M M</au><au>Lemes, V E R</au><au>Ventura, O S</au><au>Vilar, L C Q</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Chern-Simons and Gribov</atitle><jtitle>arXiv.org</jtitle><date>2020-06-23</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We explore a contact point between two distinct approaches to the confinment problem. We show that BLG-ABJM like theories generate gauge propagators with just the complex pole structure prescribed by the Gribov scenario for confinemnt. This structure, known as i-particles in Gribov-Zwanziger theories, effectively allows the definition of composite operators with a positive K\"{a}ll\'{e}n-Lehmann spectral representation for their two-point functions . Then, these operators satisfy the criteria to describe glue-ball condensates. We calculate the (first order) contribution to the two-point function of the gauge invariant condensate in an ABJM environment, showing its interpretation as a physical particle along K\"{a}ll\'{e}n-Lehmann. In the meantime, we argue for the necessity of absorbing Witten's work on holomorphic complex theories in order to settle the physical interpretation of this non-perturbative scenario.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1609.05093</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080355020
source Access via ProQuest (Open Access)
subjects Condensates
Mathematical analysis
Operators (mathematics)
title Complex Chern-Simons and Gribov
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Chern-Simons%20and%20Gribov&rft.jtitle=arXiv.org&rft.au=Amaral,%20M%20M&rft.date=2020-06-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1609.05093&rft_dat=%3Cproquest%3E2080355020%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-b66713635705b631818258a558109dacb980ce6efbcb5f52a542aa2a1e75088f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080355020&rft_id=info:pmid/&rfr_iscdi=true