Loading…
Real-Time Minimization of Average Error in the Presence of Uncertainty and Convexification of Feasible Sets
We consider a two-level discrete-time control framework with real-time constraints where a central controller issues setpoints to be implemented by local controllers. The local controllers implement the setpoints with some approximation and advertize a prediction of their constraints to the central...
Saved in:
Published in: | arXiv.org 2016-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bernstein, Andrey Bouman, Niek J Jean-Yves Le Boudec |
description | We consider a two-level discrete-time control framework with real-time constraints where a central controller issues setpoints to be implemented by local controllers. The local controllers implement the setpoints with some approximation and advertize a prediction of their constraints to the central controller. The local controllers might not be able to implement the setpoint exactly, due to prediction errors or because the central controller convexifies the problem for tractability. In this paper, we propose to compensate for these mismatches at the level of the local controller by using a variant of the error diffusion algorithm. We give conditions under which the minimal (convex) invariant set for the accumulated-error dynamics is bounded, and give a computational method to construct this set. This can be used to compute a bound on the accumulated error and hence establish convergence of the average error to zero. We illustrate the approach in the context of real-time control of electrical grids. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080415435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080415435</sourcerecordid><originalsourceid>FETCH-proquest_journals_20804154353</originalsourceid><addsrcrecordid>eNqNjLEKwjAUAIMgKOo_PHAupEmrXUUsLoJonUvUV321JpqkRf16K4iz0w13XIf1hZRhkERC9NjIuZJzLiZTEceyzy4bVFWQ0RVhRZqu9FKejAZTwKxBq04IC2uNBdLgzwhriw71AT_BrqX1irR_gtJHmBvd4IMKOvweKSpH-wphi94NWbdQlcPRlwM2ThfZfBncrLnX6HxemtrqVuWCJzwK40jG8r_qDe3eSGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080415435</pqid></control><display><type>article</type><title>Real-Time Minimization of Average Error in the Presence of Uncertainty and Convexification of Feasible Sets</title><source>Publicly Available Content Database</source><creator>Bernstein, Andrey ; Bouman, Niek J ; Jean-Yves Le Boudec</creator><creatorcontrib>Bernstein, Andrey ; Bouman, Niek J ; Jean-Yves Le Boudec</creatorcontrib><description>We consider a two-level discrete-time control framework with real-time constraints where a central controller issues setpoints to be implemented by local controllers. The local controllers implement the setpoints with some approximation and advertize a prediction of their constraints to the central controller. The local controllers might not be able to implement the setpoint exactly, due to prediction errors or because the central controller convexifies the problem for tractability. In this paper, we propose to compensate for these mismatches at the level of the local controller by using a variant of the error diffusion algorithm. We give conditions under which the minimal (convex) invariant set for the accumulated-error dynamics is bounded, and give a computational method to construct this set. This can be used to compute a bound on the accumulated error and hence establish convergence of the average error to zero. We illustrate the approach in the context of real-time control of electrical grids.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Controllers ; Errors ; Real time</subject><ispartof>arXiv.org, 2016-12</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080415435?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25728,36986,44563</link.rule.ids></links><search><creatorcontrib>Bernstein, Andrey</creatorcontrib><creatorcontrib>Bouman, Niek J</creatorcontrib><creatorcontrib>Jean-Yves Le Boudec</creatorcontrib><title>Real-Time Minimization of Average Error in the Presence of Uncertainty and Convexification of Feasible Sets</title><title>arXiv.org</title><description>We consider a two-level discrete-time control framework with real-time constraints where a central controller issues setpoints to be implemented by local controllers. The local controllers implement the setpoints with some approximation and advertize a prediction of their constraints to the central controller. The local controllers might not be able to implement the setpoint exactly, due to prediction errors or because the central controller convexifies the problem for tractability. In this paper, we propose to compensate for these mismatches at the level of the local controller by using a variant of the error diffusion algorithm. We give conditions under which the minimal (convex) invariant set for the accumulated-error dynamics is bounded, and give a computational method to construct this set. This can be used to compute a bound on the accumulated error and hence establish convergence of the average error to zero. We illustrate the approach in the context of real-time control of electrical grids.</description><subject>Algorithms</subject><subject>Controllers</subject><subject>Errors</subject><subject>Real time</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjLEKwjAUAIMgKOo_PHAupEmrXUUsLoJonUvUV321JpqkRf16K4iz0w13XIf1hZRhkERC9NjIuZJzLiZTEceyzy4bVFWQ0RVhRZqu9FKejAZTwKxBq04IC2uNBdLgzwhriw71AT_BrqX1irR_gtJHmBvd4IMKOvweKSpH-wphi94NWbdQlcPRlwM2ThfZfBncrLnX6HxemtrqVuWCJzwK40jG8r_qDe3eSGU</recordid><startdate>20161221</startdate><enddate>20161221</enddate><creator>Bernstein, Andrey</creator><creator>Bouman, Niek J</creator><creator>Jean-Yves Le Boudec</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161221</creationdate><title>Real-Time Minimization of Average Error in the Presence of Uncertainty and Convexification of Feasible Sets</title><author>Bernstein, Andrey ; Bouman, Niek J ; Jean-Yves Le Boudec</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20804154353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Controllers</topic><topic>Errors</topic><topic>Real time</topic><toplevel>online_resources</toplevel><creatorcontrib>Bernstein, Andrey</creatorcontrib><creatorcontrib>Bouman, Niek J</creatorcontrib><creatorcontrib>Jean-Yves Le Boudec</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernstein, Andrey</au><au>Bouman, Niek J</au><au>Jean-Yves Le Boudec</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Real-Time Minimization of Average Error in the Presence of Uncertainty and Convexification of Feasible Sets</atitle><jtitle>arXiv.org</jtitle><date>2016-12-21</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We consider a two-level discrete-time control framework with real-time constraints where a central controller issues setpoints to be implemented by local controllers. The local controllers implement the setpoints with some approximation and advertize a prediction of their constraints to the central controller. The local controllers might not be able to implement the setpoint exactly, due to prediction errors or because the central controller convexifies the problem for tractability. In this paper, we propose to compensate for these mismatches at the level of the local controller by using a variant of the error diffusion algorithm. We give conditions under which the minimal (convex) invariant set for the accumulated-error dynamics is bounded, and give a computational method to construct this set. This can be used to compute a bound on the accumulated error and hence establish convergence of the average error to zero. We illustrate the approach in the context of real-time control of electrical grids.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080415435 |
source | Publicly Available Content Database |
subjects | Algorithms Controllers Errors Real time |
title | Real-Time Minimization of Average Error in the Presence of Uncertainty and Convexification of Feasible Sets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T09%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Real-Time%20Minimization%20of%20Average%20Error%20in%20the%20Presence%20of%20Uncertainty%20and%20Convexification%20of%20Feasible%20Sets&rft.jtitle=arXiv.org&rft.au=Bernstein,%20Andrey&rft.date=2016-12-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080415435%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20804154353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080415435&rft_id=info:pmid/&rfr_iscdi=true |