Loading…
ResearchDoom and CocoDoom: Learning Computer Vision with Games
In this short note we introduce ResearchDoom, an implementation of the Doom first-person shooter that can extract detailed metadata from the game. We also introduce the CocoDoom dataset, a collection of pre-recorded data extracted from Doom gaming sessions along with annotations in the MS Coco forma...
Saved in:
Published in: | arXiv.org 2016-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this short note we introduce ResearchDoom, an implementation of the Doom first-person shooter that can extract detailed metadata from the game. We also introduce the CocoDoom dataset, a collection of pre-recorded data extracted from Doom gaming sessions along with annotations in the MS Coco format. ResearchDoom and CocoDoom can be used to train and evaluate a variety of computer vision methods such as object recognition, detection and segmentation at the level of instances and categories, tracking, ego-motion estimation, monocular depth estimation and scene segmentation. The code and data are available at http://www.robots.ox.ac.uk/~vgg/research/researchdoom. |
---|---|
ISSN: | 2331-8422 |