Loading…

Roman domination excellent graphs: trees

A Roman dominating function (RDF) on a graph \(G = (V, E)\) is a labeling \(f : V \rightarrow \{0, 1, 2\}\) such that every vertex with label \(0\) has a neighbor with label \(2\). The weight of \(f\) is the value \(f(V) = \Sigma_{v\in V} f(v)\). The Roman domination number, \(\gamma_R(G)\), of \(G\...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-10
Main Author: Samodivkin, Vladimir
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Samodivkin, Vladimir
description A Roman dominating function (RDF) on a graph \(G = (V, E)\) is a labeling \(f : V \rightarrow \{0, 1, 2\}\) such that every vertex with label \(0\) has a neighbor with label \(2\). The weight of \(f\) is the value \(f(V) = \Sigma_{v\in V} f(v)\). The Roman domination number, \(\gamma_R(G)\), of \(G\) is the minimum weight of an RDF on \(G\). An RDF of minimum weight is called a \(\gamma_R\)-function. A graph G is said to be \(\gamma_R\)-excellent if for each vertex \(x \in V\) there is a \(\gamma_R\)-function \(h_x\) on \(G\) with \(h_x(x) \not = 0\). We present a constructive characterization of \(\gamma_R\)-excellent trees using labelings. A graph \(G\) is said to be in class \(UVR\) if \(\gamma(G-v) = \gamma (G)\) for each \(v \in V\), where \(\gamma(G)\) is the domination number of \(G\). We show that each tree in \(UVR\) is \(\gamma_R\)-excellent.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080445901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080445901</sourcerecordid><originalsourceid>FETCH-proquest_journals_20804459013</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCMrPTcxTSMnPzcxLLMnMz1NIrUhOzclJzStRSC9KLMgotlIoKUpNLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwsDExNTSwNDY-JUAQC-zzBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080445901</pqid></control><display><type>article</type><title>Roman domination excellent graphs: trees</title><source>Publicly Available Content Database</source><creator>Samodivkin, Vladimir</creator><creatorcontrib>Samodivkin, Vladimir</creatorcontrib><description>A Roman dominating function (RDF) on a graph \(G = (V, E)\) is a labeling \(f : V \rightarrow \{0, 1, 2\}\) such that every vertex with label \(0\) has a neighbor with label \(2\). The weight of \(f\) is the value \(f(V) = \Sigma_{v\in V} f(v)\). The Roman domination number, \(\gamma_R(G)\), of \(G\) is the minimum weight of an RDF on \(G\). An RDF of minimum weight is called a \(\gamma_R\)-function. A graph G is said to be \(\gamma_R\)-excellent if for each vertex \(x \in V\) there is a \(\gamma_R\)-function \(h_x\) on \(G\) with \(h_x(x) \not = 0\). We present a constructive characterization of \(\gamma_R\)-excellent trees using labelings. A graph \(G\) is said to be in class \(UVR\) if \(\gamma(G-v) = \gamma (G)\) for each \(v \in V\), where \(\gamma(G)\) is the domination number of \(G\). We show that each tree in \(UVR\) is \(\gamma_R\)-excellent.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mathematical functions ; Minimum weight ; Trees (mathematics)</subject><ispartof>arXiv.org, 2016-10</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080445901?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Samodivkin, Vladimir</creatorcontrib><title>Roman domination excellent graphs: trees</title><title>arXiv.org</title><description>A Roman dominating function (RDF) on a graph \(G = (V, E)\) is a labeling \(f : V \rightarrow \{0, 1, 2\}\) such that every vertex with label \(0\) has a neighbor with label \(2\). The weight of \(f\) is the value \(f(V) = \Sigma_{v\in V} f(v)\). The Roman domination number, \(\gamma_R(G)\), of \(G\) is the minimum weight of an RDF on \(G\). An RDF of minimum weight is called a \(\gamma_R\)-function. A graph G is said to be \(\gamma_R\)-excellent if for each vertex \(x \in V\) there is a \(\gamma_R\)-function \(h_x\) on \(G\) with \(h_x(x) \not = 0\). We present a constructive characterization of \(\gamma_R\)-excellent trees using labelings. A graph \(G\) is said to be in class \(UVR\) if \(\gamma(G-v) = \gamma (G)\) for each \(v \in V\), where \(\gamma(G)\) is the domination number of \(G\). We show that each tree in \(UVR\) is \(\gamma_R\)-excellent.</description><subject>Mathematical functions</subject><subject>Minimum weight</subject><subject>Trees (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCMrPTcxTSMnPzcxLLMnMz1NIrUhOzclJzStRSC9KLMgotlIoKUpNLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwsDExNTSwNDY-JUAQC-zzBE</recordid><startdate>20161002</startdate><enddate>20161002</enddate><creator>Samodivkin, Vladimir</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161002</creationdate><title>Roman domination excellent graphs: trees</title><author>Samodivkin, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20804459013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematical functions</topic><topic>Minimum weight</topic><topic>Trees (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Samodivkin, Vladimir</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samodivkin, Vladimir</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Roman domination excellent graphs: trees</atitle><jtitle>arXiv.org</jtitle><date>2016-10-02</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>A Roman dominating function (RDF) on a graph \(G = (V, E)\) is a labeling \(f : V \rightarrow \{0, 1, 2\}\) such that every vertex with label \(0\) has a neighbor with label \(2\). The weight of \(f\) is the value \(f(V) = \Sigma_{v\in V} f(v)\). The Roman domination number, \(\gamma_R(G)\), of \(G\) is the minimum weight of an RDF on \(G\). An RDF of minimum weight is called a \(\gamma_R\)-function. A graph G is said to be \(\gamma_R\)-excellent if for each vertex \(x \in V\) there is a \(\gamma_R\)-function \(h_x\) on \(G\) with \(h_x(x) \not = 0\). We present a constructive characterization of \(\gamma_R\)-excellent trees using labelings. A graph \(G\) is said to be in class \(UVR\) if \(\gamma(G-v) = \gamma (G)\) for each \(v \in V\), where \(\gamma(G)\) is the domination number of \(G\). We show that each tree in \(UVR\) is \(\gamma_R\)-excellent.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080445901
source Publicly Available Content Database
subjects Mathematical functions
Minimum weight
Trees (mathematics)
title Roman domination excellent graphs: trees
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Roman%20domination%20excellent%20graphs:%20trees&rft.jtitle=arXiv.org&rft.au=Samodivkin,%20Vladimir&rft.date=2016-10-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080445901%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20804459013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080445901&rft_id=info:pmid/&rfr_iscdi=true