Loading…
Stabilization of (G)EIM in presence of measurement noise: application to nuclear reactor physics
The Empirical Interpolation Method (EIM) and its generalized version (GEIM) can be used to approximate a physical system by combining data measured from the system itself and a reduced model representing the underlying physics. In presence of noise, the good properties of the approach are blurred in...
Saved in:
Published in: | arXiv.org 2016-11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Argaud, J P Bouriquet, B Gong, H Maday, Y Mula, O |
description | The Empirical Interpolation Method (EIM) and its generalized version (GEIM) can be used to approximate a physical system by combining data measured from the system itself and a reduced model representing the underlying physics. In presence of noise, the good properties of the approach are blurred in the sense that the approximation error no longer converges but even diverges. We propose to address this issue by a least-squares projection with constrains involving a some a priori knowledge of the geometry of the manifold formed by all the possible physical states of the system. The efficiency of the approach, which we will call Constrained Stabilized GEIM (CS-GEIM), is illustrated by numerical experiments dealing with the reconstruction of the neutron flux in nuclear reactors. A theoretical justification of the procedure will be presented in future works. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080469462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080469462</sourcerecordid><originalsourceid>FETCH-proquest_journals_20804694623</originalsourceid><addsrcrecordid>eNqNi7kKAjEURYMgKOo_PLDRYiBmFpdWxqWw0l5jeIORmMS8pNCvV9EPsLpwzrkt1hV5PslmhRAdNiC6cs5FNRVlmXfZaR_lWRv9lFE7C66B0Xpcb3egLfiAhFbhh95QUgp4QxvBOk24AOm90er7iw5sUgZlgIBSRRfAXx6kFfVZu5GGcPDbHhuu6sNyk_ng7gkpHq8uBftWR8FnvKjmRSXy_6oXrLZErw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080469462</pqid></control><display><type>article</type><title>Stabilization of (G)EIM in presence of measurement noise: application to nuclear reactor physics</title><source>Publicly Available Content Database</source><creator>Argaud, J P ; Bouriquet, B ; Gong, H ; Maday, Y ; Mula, O</creator><creatorcontrib>Argaud, J P ; Bouriquet, B ; Gong, H ; Maday, Y ; Mula, O</creatorcontrib><description>The Empirical Interpolation Method (EIM) and its generalized version (GEIM) can be used to approximate a physical system by combining data measured from the system itself and a reduced model representing the underlying physics. In presence of noise, the good properties of the approach are blurred in the sense that the approximation error no longer converges but even diverges. We propose to address this issue by a least-squares projection with constrains involving a some a priori knowledge of the geometry of the manifold formed by all the possible physical states of the system. The efficiency of the approach, which we will call Constrained Stabilized GEIM (CS-GEIM), is illustrated by numerical experiments dealing with the reconstruction of the neutron flux in nuclear reactors. A theoretical justification of the procedure will be presented in future works.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Error detection ; Interpolation ; Mathematical models ; Neutron flux ; Noise measurement ; Nuclear reactors ; Reactor physics</subject><ispartof>arXiv.org, 2016-11</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080469462?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Argaud, J P</creatorcontrib><creatorcontrib>Bouriquet, B</creatorcontrib><creatorcontrib>Gong, H</creatorcontrib><creatorcontrib>Maday, Y</creatorcontrib><creatorcontrib>Mula, O</creatorcontrib><title>Stabilization of (G)EIM in presence of measurement noise: application to nuclear reactor physics</title><title>arXiv.org</title><description>The Empirical Interpolation Method (EIM) and its generalized version (GEIM) can be used to approximate a physical system by combining data measured from the system itself and a reduced model representing the underlying physics. In presence of noise, the good properties of the approach are blurred in the sense that the approximation error no longer converges but even diverges. We propose to address this issue by a least-squares projection with constrains involving a some a priori knowledge of the geometry of the manifold formed by all the possible physical states of the system. The efficiency of the approach, which we will call Constrained Stabilized GEIM (CS-GEIM), is illustrated by numerical experiments dealing with the reconstruction of the neutron flux in nuclear reactors. A theoretical justification of the procedure will be presented in future works.</description><subject>Error detection</subject><subject>Interpolation</subject><subject>Mathematical models</subject><subject>Neutron flux</subject><subject>Noise measurement</subject><subject>Nuclear reactors</subject><subject>Reactor physics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi7kKAjEURYMgKOo_PLDRYiBmFpdWxqWw0l5jeIORmMS8pNCvV9EPsLpwzrkt1hV5PslmhRAdNiC6cs5FNRVlmXfZaR_lWRv9lFE7C66B0Xpcb3egLfiAhFbhh95QUgp4QxvBOk24AOm90er7iw5sUgZlgIBSRRfAXx6kFfVZu5GGcPDbHhuu6sNyk_ng7gkpHq8uBftWR8FnvKjmRSXy_6oXrLZErw</recordid><startdate>20161107</startdate><enddate>20161107</enddate><creator>Argaud, J P</creator><creator>Bouriquet, B</creator><creator>Gong, H</creator><creator>Maday, Y</creator><creator>Mula, O</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161107</creationdate><title>Stabilization of (G)EIM in presence of measurement noise: application to nuclear reactor physics</title><author>Argaud, J P ; Bouriquet, B ; Gong, H ; Maday, Y ; Mula, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20804694623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Error detection</topic><topic>Interpolation</topic><topic>Mathematical models</topic><topic>Neutron flux</topic><topic>Noise measurement</topic><topic>Nuclear reactors</topic><topic>Reactor physics</topic><toplevel>online_resources</toplevel><creatorcontrib>Argaud, J P</creatorcontrib><creatorcontrib>Bouriquet, B</creatorcontrib><creatorcontrib>Gong, H</creatorcontrib><creatorcontrib>Maday, Y</creatorcontrib><creatorcontrib>Mula, O</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Argaud, J P</au><au>Bouriquet, B</au><au>Gong, H</au><au>Maday, Y</au><au>Mula, O</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stabilization of (G)EIM in presence of measurement noise: application to nuclear reactor physics</atitle><jtitle>arXiv.org</jtitle><date>2016-11-07</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>The Empirical Interpolation Method (EIM) and its generalized version (GEIM) can be used to approximate a physical system by combining data measured from the system itself and a reduced model representing the underlying physics. In presence of noise, the good properties of the approach are blurred in the sense that the approximation error no longer converges but even diverges. We propose to address this issue by a least-squares projection with constrains involving a some a priori knowledge of the geometry of the manifold formed by all the possible physical states of the system. The efficiency of the approach, which we will call Constrained Stabilized GEIM (CS-GEIM), is illustrated by numerical experiments dealing with the reconstruction of the neutron flux in nuclear reactors. A theoretical justification of the procedure will be presented in future works.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080469462 |
source | Publicly Available Content Database |
subjects | Error detection Interpolation Mathematical models Neutron flux Noise measurement Nuclear reactors Reactor physics |
title | Stabilization of (G)EIM in presence of measurement noise: application to nuclear reactor physics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stabilization%20of%20(G)EIM%20in%20presence%20of%20measurement%20noise:%20application%20to%20nuclear%20reactor%20physics&rft.jtitle=arXiv.org&rft.au=Argaud,%20J%20P&rft.date=2016-11-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080469462%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20804694623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080469462&rft_id=info:pmid/&rfr_iscdi=true |