Loading…

Quasi-stability and Exponential Attractors for A Non-Gradient System---Applications to Piston-Theoretic Plates with Internal Damping

We consider a nonlinear (Berger or Von Karman) clamped plate model with a {\em piston-theoretic} right hand side---which include non-dissipative, non-conservative lower order terms. The model arises in aeroelasticity when a panel is immersed in a high velocity linear potential flow; in this case the...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-09
Main Authors: Howell, Jason S, Lasiecka, Irena, Webster, Justin T
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Howell, Jason S
Lasiecka, Irena
Webster, Justin T
description We consider a nonlinear (Berger or Von Karman) clamped plate model with a {\em piston-theoretic} right hand side---which include non-dissipative, non-conservative lower order terms. The model arises in aeroelasticity when a panel is immersed in a high velocity linear potential flow; in this case the effect of the flow can be captured by a dynamic pressure term written in terms of the material derivative of the plate's displacement. The effect of fully-supported internal damping is studied for both Berger and von Karman dynamics. The non-dissipative nature of the dynamics preclude the use of strong tools such as backward-in-time smallness of velocities and finiteness of the dissipation integral. Modern quasi-stability techniques are utilized to show the existence of compact global attractors and generalized fractal exponential attractors. Specific results depending on the size of the damping parameter and the nonlinearity in force. For the Berger plate, in the presence of large damping, the existence of a proper global attractor (whose fractal dimension is finite in the state space) is shown via a decomposition of the nonlinear dynamics. This leads to the construction of a compact set upon which quasi-stability theory can be implemented. Numerical investigations for appropriate 1-D models are presented which explore and support the abstract results presented herein.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080580902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080580902</sourcerecordid><originalsourceid>FETCH-proquest_journals_20805809023</originalsourceid><addsrcrecordid>eNqNzE1LAzEQxvEgCBbtdxjwHIjZbrseF1tfLlKx9zLdpnZKmkkzs2jvfnBX8AN4ei6_539hRr6q7mwz8f7KjEUOzjk_nfm6rkbm-61HISuKG4qkZ8C0hcVX5hSSEkZoVQt2ykVgxwVaeOVknwpuaQDwfhYNR2ttm3OkDpU4CSjDkkQHuNoHLkGpg2VEDQKfpHt4SRpKGuJzPGZKHzfmcodRwvhvr83t42L18Gxz4VMfRNcH7n8PsvaucXXj7p2v_qd-AIpFUio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080580902</pqid></control><display><type>article</type><title>Quasi-stability and Exponential Attractors for A Non-Gradient System---Applications to Piston-Theoretic Plates with Internal Damping</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Howell, Jason S ; Lasiecka, Irena ; Webster, Justin T</creator><creatorcontrib>Howell, Jason S ; Lasiecka, Irena ; Webster, Justin T</creatorcontrib><description>We consider a nonlinear (Berger or Von Karman) clamped plate model with a {\em piston-theoretic} right hand side---which include non-dissipative, non-conservative lower order terms. The model arises in aeroelasticity when a panel is immersed in a high velocity linear potential flow; in this case the effect of the flow can be captured by a dynamic pressure term written in terms of the material derivative of the plate's displacement. The effect of fully-supported internal damping is studied for both Berger and von Karman dynamics. The non-dissipative nature of the dynamics preclude the use of strong tools such as backward-in-time smallness of velocities and finiteness of the dissipation integral. Modern quasi-stability techniques are utilized to show the existence of compact global attractors and generalized fractal exponential attractors. Specific results depending on the size of the damping parameter and the nonlinearity in force. For the Berger plate, in the presence of large damping, the existence of a proper global attractor (whose fractal dimension is finite in the state space) is shown via a decomposition of the nonlinear dynamics. This leads to the construction of a compact set upon which quasi-stability theory can be implemented. Numerical investigations for appropriate 1-D models are presented which explore and support the abstract results presented herein.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Aeroelasticity ; Damping ; Dynamic pressure ; Dynamical systems ; Fractal geometry ; Fractals ; Mathematical models ; Nonlinear dynamics ; Nonlinearity ; Potential flow ; Stability</subject><ispartof>arXiv.org, 2016-09</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080580902?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Howell, Jason S</creatorcontrib><creatorcontrib>Lasiecka, Irena</creatorcontrib><creatorcontrib>Webster, Justin T</creatorcontrib><title>Quasi-stability and Exponential Attractors for A Non-Gradient System---Applications to Piston-Theoretic Plates with Internal Damping</title><title>arXiv.org</title><description>We consider a nonlinear (Berger or Von Karman) clamped plate model with a {\em piston-theoretic} right hand side---which include non-dissipative, non-conservative lower order terms. The model arises in aeroelasticity when a panel is immersed in a high velocity linear potential flow; in this case the effect of the flow can be captured by a dynamic pressure term written in terms of the material derivative of the plate's displacement. The effect of fully-supported internal damping is studied for both Berger and von Karman dynamics. The non-dissipative nature of the dynamics preclude the use of strong tools such as backward-in-time smallness of velocities and finiteness of the dissipation integral. Modern quasi-stability techniques are utilized to show the existence of compact global attractors and generalized fractal exponential attractors. Specific results depending on the size of the damping parameter and the nonlinearity in force. For the Berger plate, in the presence of large damping, the existence of a proper global attractor (whose fractal dimension is finite in the state space) is shown via a decomposition of the nonlinear dynamics. This leads to the construction of a compact set upon which quasi-stability theory can be implemented. Numerical investigations for appropriate 1-D models are presented which explore and support the abstract results presented herein.</description><subject>Aeroelasticity</subject><subject>Damping</subject><subject>Dynamic pressure</subject><subject>Dynamical systems</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Mathematical models</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Potential flow</subject><subject>Stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzE1LAzEQxvEgCBbtdxjwHIjZbrseF1tfLlKx9zLdpnZKmkkzs2jvfnBX8AN4ei6_539hRr6q7mwz8f7KjEUOzjk_nfm6rkbm-61HISuKG4qkZ8C0hcVX5hSSEkZoVQt2ykVgxwVaeOVknwpuaQDwfhYNR2ttm3OkDpU4CSjDkkQHuNoHLkGpg2VEDQKfpHt4SRpKGuJzPGZKHzfmcodRwvhvr83t42L18Gxz4VMfRNcH7n8PsvaucXXj7p2v_qd-AIpFUio</recordid><startdate>20160907</startdate><enddate>20160907</enddate><creator>Howell, Jason S</creator><creator>Lasiecka, Irena</creator><creator>Webster, Justin T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160907</creationdate><title>Quasi-stability and Exponential Attractors for A Non-Gradient System---Applications to Piston-Theoretic Plates with Internal Damping</title><author>Howell, Jason S ; Lasiecka, Irena ; Webster, Justin T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20805809023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aeroelasticity</topic><topic>Damping</topic><topic>Dynamic pressure</topic><topic>Dynamical systems</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Mathematical models</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Potential flow</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Howell, Jason S</creatorcontrib><creatorcontrib>Lasiecka, Irena</creatorcontrib><creatorcontrib>Webster, Justin T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howell, Jason S</au><au>Lasiecka, Irena</au><au>Webster, Justin T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quasi-stability and Exponential Attractors for A Non-Gradient System---Applications to Piston-Theoretic Plates with Internal Damping</atitle><jtitle>arXiv.org</jtitle><date>2016-09-07</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We consider a nonlinear (Berger or Von Karman) clamped plate model with a {\em piston-theoretic} right hand side---which include non-dissipative, non-conservative lower order terms. The model arises in aeroelasticity when a panel is immersed in a high velocity linear potential flow; in this case the effect of the flow can be captured by a dynamic pressure term written in terms of the material derivative of the plate's displacement. The effect of fully-supported internal damping is studied for both Berger and von Karman dynamics. The non-dissipative nature of the dynamics preclude the use of strong tools such as backward-in-time smallness of velocities and finiteness of the dissipation integral. Modern quasi-stability techniques are utilized to show the existence of compact global attractors and generalized fractal exponential attractors. Specific results depending on the size of the damping parameter and the nonlinearity in force. For the Berger plate, in the presence of large damping, the existence of a proper global attractor (whose fractal dimension is finite in the state space) is shown via a decomposition of the nonlinear dynamics. This leads to the construction of a compact set upon which quasi-stability theory can be implemented. Numerical investigations for appropriate 1-D models are presented which explore and support the abstract results presented herein.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080580902
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Aeroelasticity
Damping
Dynamic pressure
Dynamical systems
Fractal geometry
Fractals
Mathematical models
Nonlinear dynamics
Nonlinearity
Potential flow
Stability
title Quasi-stability and Exponential Attractors for A Non-Gradient System---Applications to Piston-Theoretic Plates with Internal Damping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quasi-stability%20and%20Exponential%20Attractors%20for%20A%20Non-Gradient%20System---Applications%20to%20Piston-Theoretic%20Plates%20with%20Internal%20Damping&rft.jtitle=arXiv.org&rft.au=Howell,%20Jason%20S&rft.date=2016-09-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080580902%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20805809023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080580902&rft_id=info:pmid/&rfr_iscdi=true