Loading…

Surface effects on ferromagnetic resonance in magnetic nanocubes

We study the effect of surface anisotropy on the spectrum of spin-wave excitations in a magnetic nanocluster and compute the corresponding absorbed power. For this, we develop a general numerical method based on the (undamped) Landau-Lifshitz equation, either linearized around the equilibrium state...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-11
Main Authors: Bastardis, R, Vernay, F, D -A Garanin, Kachkachi, H
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bastardis, R
Vernay, F
D -A Garanin
Kachkachi, H
description We study the effect of surface anisotropy on the spectrum of spin-wave excitations in a magnetic nanocluster and compute the corresponding absorbed power. For this, we develop a general numerical method based on the (undamped) Landau-Lifshitz equation, either linearized around the equilibrium state leading to an eigenvalue problem or solved using a symplectic technique. For box-shaped clusters, the numerical results are favorably compared to those of the finite-size linear spin-wave theory. Our numerical method allows us to disentangle the contributions of the core and surface spins to the spectral weight and absorbed power. In regard to the recent developments in synthesis and characterization of assemblies of well defined nano-elements, we study the effects of free boundaries and surface anisotropy on the spin-wave spectrum in iron nanocubes and give orders of magnitude of the expected spin-wave resonances. For an 8 nm iron nanocube, we show that the absorbed power spectrum should exhibit a low-energy peak around 10 GHz, typical of the uniform mode, followed by other low-energy features that couple to the uniform mode but with a stronger contribution from the surface. There are also high-frequency exchange-mode peaks around 60 GHz.
doi_str_mv 10.48550/arxiv.1611.00614
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080592544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080592544</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-e7b84b4fa9b0a656061869763b43cca5db36840e32dcb20ab979fe3cfa0f24133</originalsourceid><addsrcrecordid>eNo9jk1LAzEURYMgWGp_gLsB1zO-5CWZzE4pfhQKLuy-vKQvMkUTTTriz3dAcXXhcDn3CnElodPOGLih8j1-ddJK2QFYqc_EQiHK1mmlLsSq1iMAKNsrY3Ahbl-mEilwwzFyONUmpyZyKfmdXhOfxtAUrjlRmitjav7pTHKYPNdLcR7prfLqL5di93C_Wz-12-fHzfpu25JRuuXeO-11pMEDWWPnY84OvUWvMQQyB4_WaWBUh-AVkB_6ITKGSBCVlohLcf2r_Sj5c-J62h_zVNK8uFfgwAzKaI0_nyBLGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080592544</pqid></control><display><type>article</type><title>Surface effects on ferromagnetic resonance in magnetic nanocubes</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bastardis, R ; Vernay, F ; D -A Garanin ; Kachkachi, H</creator><creatorcontrib>Bastardis, R ; Vernay, F ; D -A Garanin ; Kachkachi, H</creatorcontrib><description>We study the effect of surface anisotropy on the spectrum of spin-wave excitations in a magnetic nanocluster and compute the corresponding absorbed power. For this, we develop a general numerical method based on the (undamped) Landau-Lifshitz equation, either linearized around the equilibrium state leading to an eigenvalue problem or solved using a symplectic technique. For box-shaped clusters, the numerical results are favorably compared to those of the finite-size linear spin-wave theory. Our numerical method allows us to disentangle the contributions of the core and surface spins to the spectral weight and absorbed power. In regard to the recent developments in synthesis and characterization of assemblies of well defined nano-elements, we study the effects of free boundaries and surface anisotropy on the spin-wave spectrum in iron nanocubes and give orders of magnitude of the expected spin-wave resonances. For an 8 nm iron nanocube, we show that the absorbed power spectrum should exhibit a low-energy peak around 10 GHz, typical of the uniform mode, followed by other low-energy features that couple to the uniform mode but with a stronger contribution from the surface. There are also high-frequency exchange-mode peaks around 60 GHz.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1611.00614</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anisotropy ; Eigenvalues ; Excitation spectra ; Ferromagnetic resonance ; Ferromagnetism ; Free boundaries ; Iron ; Linearization ; Numerical analysis ; Numerical methods ; Weight</subject><ispartof>arXiv.org, 2016-11</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080592544?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Bastardis, R</creatorcontrib><creatorcontrib>Vernay, F</creatorcontrib><creatorcontrib>D -A Garanin</creatorcontrib><creatorcontrib>Kachkachi, H</creatorcontrib><title>Surface effects on ferromagnetic resonance in magnetic nanocubes</title><title>arXiv.org</title><description>We study the effect of surface anisotropy on the spectrum of spin-wave excitations in a magnetic nanocluster and compute the corresponding absorbed power. For this, we develop a general numerical method based on the (undamped) Landau-Lifshitz equation, either linearized around the equilibrium state leading to an eigenvalue problem or solved using a symplectic technique. For box-shaped clusters, the numerical results are favorably compared to those of the finite-size linear spin-wave theory. Our numerical method allows us to disentangle the contributions of the core and surface spins to the spectral weight and absorbed power. In regard to the recent developments in synthesis and characterization of assemblies of well defined nano-elements, we study the effects of free boundaries and surface anisotropy on the spin-wave spectrum in iron nanocubes and give orders of magnitude of the expected spin-wave resonances. For an 8 nm iron nanocube, we show that the absorbed power spectrum should exhibit a low-energy peak around 10 GHz, typical of the uniform mode, followed by other low-energy features that couple to the uniform mode but with a stronger contribution from the surface. There are also high-frequency exchange-mode peaks around 60 GHz.</description><subject>Anisotropy</subject><subject>Eigenvalues</subject><subject>Excitation spectra</subject><subject>Ferromagnetic resonance</subject><subject>Ferromagnetism</subject><subject>Free boundaries</subject><subject>Iron</subject><subject>Linearization</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Weight</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9jk1LAzEURYMgWGp_gLsB1zO-5CWZzE4pfhQKLuy-vKQvMkUTTTriz3dAcXXhcDn3CnElodPOGLih8j1-ddJK2QFYqc_EQiHK1mmlLsSq1iMAKNsrY3Ahbl-mEilwwzFyONUmpyZyKfmdXhOfxtAUrjlRmitjav7pTHKYPNdLcR7prfLqL5di93C_Wz-12-fHzfpu25JRuuXeO-11pMEDWWPnY84OvUWvMQQyB4_WaWBUh-AVkB_6ITKGSBCVlohLcf2r_Sj5c-J62h_zVNK8uFfgwAzKaI0_nyBLGA</recordid><startdate>20161102</startdate><enddate>20161102</enddate><creator>Bastardis, R</creator><creator>Vernay, F</creator><creator>D -A Garanin</creator><creator>Kachkachi, H</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161102</creationdate><title>Surface effects on ferromagnetic resonance in magnetic nanocubes</title><author>Bastardis, R ; Vernay, F ; D -A Garanin ; Kachkachi, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-e7b84b4fa9b0a656061869763b43cca5db36840e32dcb20ab979fe3cfa0f24133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropy</topic><topic>Eigenvalues</topic><topic>Excitation spectra</topic><topic>Ferromagnetic resonance</topic><topic>Ferromagnetism</topic><topic>Free boundaries</topic><topic>Iron</topic><topic>Linearization</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Weight</topic><toplevel>online_resources</toplevel><creatorcontrib>Bastardis, R</creatorcontrib><creatorcontrib>Vernay, F</creatorcontrib><creatorcontrib>D -A Garanin</creatorcontrib><creatorcontrib>Kachkachi, H</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastardis, R</au><au>Vernay, F</au><au>D -A Garanin</au><au>Kachkachi, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface effects on ferromagnetic resonance in magnetic nanocubes</atitle><jtitle>arXiv.org</jtitle><date>2016-11-02</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We study the effect of surface anisotropy on the spectrum of spin-wave excitations in a magnetic nanocluster and compute the corresponding absorbed power. For this, we develop a general numerical method based on the (undamped) Landau-Lifshitz equation, either linearized around the equilibrium state leading to an eigenvalue problem or solved using a symplectic technique. For box-shaped clusters, the numerical results are favorably compared to those of the finite-size linear spin-wave theory. Our numerical method allows us to disentangle the contributions of the core and surface spins to the spectral weight and absorbed power. In regard to the recent developments in synthesis and characterization of assemblies of well defined nano-elements, we study the effects of free boundaries and surface anisotropy on the spin-wave spectrum in iron nanocubes and give orders of magnitude of the expected spin-wave resonances. For an 8 nm iron nanocube, we show that the absorbed power spectrum should exhibit a low-energy peak around 10 GHz, typical of the uniform mode, followed by other low-energy features that couple to the uniform mode but with a stronger contribution from the surface. There are also high-frequency exchange-mode peaks around 60 GHz.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1611.00614</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080592544
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Anisotropy
Eigenvalues
Excitation spectra
Ferromagnetic resonance
Ferromagnetism
Free boundaries
Iron
Linearization
Numerical analysis
Numerical methods
Weight
title Surface effects on ferromagnetic resonance in magnetic nanocubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20effects%20on%20ferromagnetic%20resonance%20in%20magnetic%20nanocubes&rft.jtitle=arXiv.org&rft.au=Bastardis,%20R&rft.date=2016-11-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1611.00614&rft_dat=%3Cproquest%3E2080592544%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-e7b84b4fa9b0a656061869763b43cca5db36840e32dcb20ab979fe3cfa0f24133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080592544&rft_id=info:pmid/&rfr_iscdi=true