Loading…

Magnetohydrodynamic Simulation Code CANS+: Assessments and Applications

We present a new magnetohydrodynamic (MHD) simulation code with the aim of providing accurate numerical solutions to astrophysical phenomena where discontinuities, shock waves, and turbulence are inherently important. The code implements the HLLD approximate Riemann solver, the fifth-order-monotonic...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-08
Main Authors: Matsumoto, Yosuke, Asahina, Yuta, Kudoh, Yuki, Kawashima, Tomohisa, Matsumoto, Jin, Takahashi, Hiroyuki R, Minoshima, Takashi, Zenitani, Seiji, Miyoshi, Takahiro, Matsumoto, Ryoji
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Matsumoto, Yosuke
Asahina, Yuta
Kudoh, Yuki
Kawashima, Tomohisa
Matsumoto, Jin
Takahashi, Hiroyuki R
Minoshima, Takashi
Zenitani, Seiji
Miyoshi, Takahiro
Matsumoto, Ryoji
description We present a new magnetohydrodynamic (MHD) simulation code with the aim of providing accurate numerical solutions to astrophysical phenomena where discontinuities, shock waves, and turbulence are inherently important. The code implements the HLLD approximate Riemann solver, the fifth-order-monotonicity-preserving interpolation (MP5) scheme, and the hyperbolic divergence cleaning method for a magnetic field. This choice of schemes significantly improved numerical accuracy and stability, and saved computational costs in multidimensional problems. Numerical tests of one- and two-dimensional problems showed the advantages of using the high-order scheme by comparing with results from a standard second-order TVD MUSCL scheme. The present code enabled us to explore long-term evolution of a three-dimensional accretion disk around a black hole, in which compressible MHD turbulence caused continuous mass accretion via nonlinear growth of the magneto-rotational instability (MRI). Numerical tests with various computational cell sizes exhibited a convergent picture of the early nonlinear growth of the MRI in a global model, and indicated that the MP5 scheme has more than twice the resolution of the MUSCL scheme in practical applications.
doi_str_mv 10.48550/arxiv.1611.01775
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080600120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080600120</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-c19794ecbd00ca4e79789e5c8b77bb67d80e14cd8b6328678d9367dfd71c600d3</originalsourceid><addsrcrecordid>eNotjU9LwzAchoMgOOY-gLeAR2n95X_qrRTdhKmH7T7SJNOONqlNK-7bW9TTAy8P74PQDYGcayHg3gzfzVdOJCE5EKXEBVpQxkimOaVXaJXSCQCoVFQItkDrF_Me_Bg_zm6I7hxM11i8a7qpNWMTA66i87gqX3d3D7hMyafU-TAmbILDZd-3jf310jW6PJo2-dU_l2j_9LivNtn2bf1cldvMCAqZJYUquLe1A7CGe1UoXXhhda1UXUvlNHjCrdO1ZFRLpV3B5vXoFLESwLEluv277Yf4Ofk0Hk5xGsJcPFDQMDuEAvsB1g5NGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080600120</pqid></control><display><type>article</type><title>Magnetohydrodynamic Simulation Code CANS+: Assessments and Applications</title><source>Publicly Available Content Database</source><creator>Matsumoto, Yosuke ; Asahina, Yuta ; Kudoh, Yuki ; Kawashima, Tomohisa ; Matsumoto, Jin ; Takahashi, Hiroyuki R ; Minoshima, Takashi ; Zenitani, Seiji ; Miyoshi, Takahiro ; Matsumoto, Ryoji</creator><creatorcontrib>Matsumoto, Yosuke ; Asahina, Yuta ; Kudoh, Yuki ; Kawashima, Tomohisa ; Matsumoto, Jin ; Takahashi, Hiroyuki R ; Minoshima, Takashi ; Zenitani, Seiji ; Miyoshi, Takahiro ; Matsumoto, Ryoji</creatorcontrib><description>We present a new magnetohydrodynamic (MHD) simulation code with the aim of providing accurate numerical solutions to astrophysical phenomena where discontinuities, shock waves, and turbulence are inherently important. The code implements the HLLD approximate Riemann solver, the fifth-order-monotonicity-preserving interpolation (MP5) scheme, and the hyperbolic divergence cleaning method for a magnetic field. This choice of schemes significantly improved numerical accuracy and stability, and saved computational costs in multidimensional problems. Numerical tests of one- and two-dimensional problems showed the advantages of using the high-order scheme by comparing with results from a standard second-order TVD MUSCL scheme. The present code enabled us to explore long-term evolution of a three-dimensional accretion disk around a black hole, in which compressible MHD turbulence caused continuous mass accretion via nonlinear growth of the magneto-rotational instability (MRI). Numerical tests with various computational cell sizes exhibited a convergent picture of the early nonlinear growth of the MRI in a global model, and indicated that the MP5 scheme has more than twice the resolution of the MUSCL scheme in practical applications.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1611.01775</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accretion disks ; Black holes ; Compressibility ; Computing costs ; Divergence ; Interpolation ; Magnetic fields ; Magnetohydrodynamic simulation ; Magnetohydrodynamic turbulence ; MUSCL schemes ; Riemann solver ; Shock waves</subject><ispartof>arXiv.org, 2019-08</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080600120?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Matsumoto, Yosuke</creatorcontrib><creatorcontrib>Asahina, Yuta</creatorcontrib><creatorcontrib>Kudoh, Yuki</creatorcontrib><creatorcontrib>Kawashima, Tomohisa</creatorcontrib><creatorcontrib>Matsumoto, Jin</creatorcontrib><creatorcontrib>Takahashi, Hiroyuki R</creatorcontrib><creatorcontrib>Minoshima, Takashi</creatorcontrib><creatorcontrib>Zenitani, Seiji</creatorcontrib><creatorcontrib>Miyoshi, Takahiro</creatorcontrib><creatorcontrib>Matsumoto, Ryoji</creatorcontrib><title>Magnetohydrodynamic Simulation Code CANS+: Assessments and Applications</title><title>arXiv.org</title><description>We present a new magnetohydrodynamic (MHD) simulation code with the aim of providing accurate numerical solutions to astrophysical phenomena where discontinuities, shock waves, and turbulence are inherently important. The code implements the HLLD approximate Riemann solver, the fifth-order-monotonicity-preserving interpolation (MP5) scheme, and the hyperbolic divergence cleaning method for a magnetic field. This choice of schemes significantly improved numerical accuracy and stability, and saved computational costs in multidimensional problems. Numerical tests of one- and two-dimensional problems showed the advantages of using the high-order scheme by comparing with results from a standard second-order TVD MUSCL scheme. The present code enabled us to explore long-term evolution of a three-dimensional accretion disk around a black hole, in which compressible MHD turbulence caused continuous mass accretion via nonlinear growth of the magneto-rotational instability (MRI). Numerical tests with various computational cell sizes exhibited a convergent picture of the early nonlinear growth of the MRI in a global model, and indicated that the MP5 scheme has more than twice the resolution of the MUSCL scheme in practical applications.</description><subject>Accretion disks</subject><subject>Black holes</subject><subject>Compressibility</subject><subject>Computing costs</subject><subject>Divergence</subject><subject>Interpolation</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic simulation</subject><subject>Magnetohydrodynamic turbulence</subject><subject>MUSCL schemes</subject><subject>Riemann solver</subject><subject>Shock waves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU9LwzAchoMgOOY-gLeAR2n95X_qrRTdhKmH7T7SJNOONqlNK-7bW9TTAy8P74PQDYGcayHg3gzfzVdOJCE5EKXEBVpQxkimOaVXaJXSCQCoVFQItkDrF_Me_Bg_zm6I7hxM11i8a7qpNWMTA66i87gqX3d3D7hMyafU-TAmbILDZd-3jf310jW6PJo2-dU_l2j_9LivNtn2bf1cldvMCAqZJYUquLe1A7CGe1UoXXhhda1UXUvlNHjCrdO1ZFRLpV3B5vXoFLESwLEluv277Yf4Ofk0Hk5xGsJcPFDQMDuEAvsB1g5NGg</recordid><startdate>20190819</startdate><enddate>20190819</enddate><creator>Matsumoto, Yosuke</creator><creator>Asahina, Yuta</creator><creator>Kudoh, Yuki</creator><creator>Kawashima, Tomohisa</creator><creator>Matsumoto, Jin</creator><creator>Takahashi, Hiroyuki R</creator><creator>Minoshima, Takashi</creator><creator>Zenitani, Seiji</creator><creator>Miyoshi, Takahiro</creator><creator>Matsumoto, Ryoji</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190819</creationdate><title>Magnetohydrodynamic Simulation Code CANS+: Assessments and Applications</title><author>Matsumoto, Yosuke ; Asahina, Yuta ; Kudoh, Yuki ; Kawashima, Tomohisa ; Matsumoto, Jin ; Takahashi, Hiroyuki R ; Minoshima, Takashi ; Zenitani, Seiji ; Miyoshi, Takahiro ; Matsumoto, Ryoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-c19794ecbd00ca4e79789e5c8b77bb67d80e14cd8b6328678d9367dfd71c600d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accretion disks</topic><topic>Black holes</topic><topic>Compressibility</topic><topic>Computing costs</topic><topic>Divergence</topic><topic>Interpolation</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic simulation</topic><topic>Magnetohydrodynamic turbulence</topic><topic>MUSCL schemes</topic><topic>Riemann solver</topic><topic>Shock waves</topic><toplevel>online_resources</toplevel><creatorcontrib>Matsumoto, Yosuke</creatorcontrib><creatorcontrib>Asahina, Yuta</creatorcontrib><creatorcontrib>Kudoh, Yuki</creatorcontrib><creatorcontrib>Kawashima, Tomohisa</creatorcontrib><creatorcontrib>Matsumoto, Jin</creatorcontrib><creatorcontrib>Takahashi, Hiroyuki R</creatorcontrib><creatorcontrib>Minoshima, Takashi</creatorcontrib><creatorcontrib>Zenitani, Seiji</creatorcontrib><creatorcontrib>Miyoshi, Takahiro</creatorcontrib><creatorcontrib>Matsumoto, Ryoji</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsumoto, Yosuke</au><au>Asahina, Yuta</au><au>Kudoh, Yuki</au><au>Kawashima, Tomohisa</au><au>Matsumoto, Jin</au><au>Takahashi, Hiroyuki R</au><au>Minoshima, Takashi</au><au>Zenitani, Seiji</au><au>Miyoshi, Takahiro</au><au>Matsumoto, Ryoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetohydrodynamic Simulation Code CANS+: Assessments and Applications</atitle><jtitle>arXiv.org</jtitle><date>2019-08-19</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We present a new magnetohydrodynamic (MHD) simulation code with the aim of providing accurate numerical solutions to astrophysical phenomena where discontinuities, shock waves, and turbulence are inherently important. The code implements the HLLD approximate Riemann solver, the fifth-order-monotonicity-preserving interpolation (MP5) scheme, and the hyperbolic divergence cleaning method for a magnetic field. This choice of schemes significantly improved numerical accuracy and stability, and saved computational costs in multidimensional problems. Numerical tests of one- and two-dimensional problems showed the advantages of using the high-order scheme by comparing with results from a standard second-order TVD MUSCL scheme. The present code enabled us to explore long-term evolution of a three-dimensional accretion disk around a black hole, in which compressible MHD turbulence caused continuous mass accretion via nonlinear growth of the magneto-rotational instability (MRI). Numerical tests with various computational cell sizes exhibited a convergent picture of the early nonlinear growth of the MRI in a global model, and indicated that the MP5 scheme has more than twice the resolution of the MUSCL scheme in practical applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1611.01775</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080600120
source Publicly Available Content Database
subjects Accretion disks
Black holes
Compressibility
Computing costs
Divergence
Interpolation
Magnetic fields
Magnetohydrodynamic simulation
Magnetohydrodynamic turbulence
MUSCL schemes
Riemann solver
Shock waves
title Magnetohydrodynamic Simulation Code CANS+: Assessments and Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetohydrodynamic%20Simulation%20Code%20CANS+:%20Assessments%20and%20Applications&rft.jtitle=arXiv.org&rft.au=Matsumoto,%20Yosuke&rft.date=2019-08-19&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1611.01775&rft_dat=%3Cproquest%3E2080600120%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-c19794ecbd00ca4e79789e5c8b77bb67d80e14cd8b6328678d9367dfd71c600d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080600120&rft_id=info:pmid/&rfr_iscdi=true