Loading…
Reconceiling the orbital and physical properties of the martian moons
The origin of Phobos and Deimos is still an open question. Currently, none of the three proposed scenarios for their origin (intact capture of two distinct outer solar system small bodies, co-accretion with Mars, and accretion within an impact-generated disk) is able to reconcile their orbital and p...
Saved in:
Published in: | arXiv.org 2016-07 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ronnet, Thomas Vernazza, Pierre Mousis, Olivier Brugger, Bastien Beck, Pierre Devouard, Bertrand Witasse, Olivier Cipriani, Fabrice |
description | The origin of Phobos and Deimos is still an open question. Currently, none of the three proposed scenarios for their origin (intact capture of two distinct outer solar system small bodies, co-accretion with Mars, and accretion within an impact-generated disk) is able to reconcile their orbital and physical properties. Here, we investigate the expected mineralogical composition and size of the grains from which the moons once accreted assuming they formed within an impact-generated accretion disk. A comparison of our results with the present day spectral properties of the moons allows us to conclude that their building blocks cannot originate from a magma phase, thus preventing their formation in the innermost part of the disk. Instead, gas-to-solid condensation of the building blocks in the outer part of an extended gaseous disk is found as a possible formation mechanism as it does allow reproducing both the spectral and physical properties of the moons. Such a scenario may finally reconcile their orbital and physical properties alleviating the need to invoke an unlikely capture scenario to explain their physical properties. |
doi_str_mv | 10.48550/arxiv.1607.02350 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080627967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080627967</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-9e4db48347a5775f644ea16261362cecd94c74e23e16ed7d04196f89735d44b63</originalsourceid><addsrcrecordid>eNotjl1LwzAYhYMgOOZ-gHcBr1uTN2-S9lLG_ICBILsfafLWdXRJbTrRf2_RXR0eODznMHYnRYmV1uLBjd_dVymNsKUApcUVW4BSsqgQ4Iatcj4KIcBY0Fot2OadfIqeur6LH3w6EE9j002u5y4GPhx-cudnGMY00Dh1lHlq_2onN6OL_JRSzLfsunV9ptUll2z3tNmtX4rt2_Pr-nFbOA22qAlDg5VC67S1ujWI5KQBI5UBTz7U6C0SKJKGgg0CZW3aqrZKB8TGqCW7_9fOdz7PlKf9MZ3HOC_uQVTCgK2NVb8oLkwn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080627967</pqid></control><display><type>article</type><title>Reconceiling the orbital and physical properties of the martian moons</title><source>Publicly Available Content Database</source><creator>Ronnet, Thomas ; Vernazza, Pierre ; Mousis, Olivier ; Brugger, Bastien ; Beck, Pierre ; Devouard, Bertrand ; Witasse, Olivier ; Cipriani, Fabrice</creator><creatorcontrib>Ronnet, Thomas ; Vernazza, Pierre ; Mousis, Olivier ; Brugger, Bastien ; Beck, Pierre ; Devouard, Bertrand ; Witasse, Olivier ; Cipriani, Fabrice</creatorcontrib><description>The origin of Phobos and Deimos is still an open question. Currently, none of the three proposed scenarios for their origin (intact capture of two distinct outer solar system small bodies, co-accretion with Mars, and accretion within an impact-generated disk) is able to reconcile their orbital and physical properties. Here, we investigate the expected mineralogical composition and size of the grains from which the moons once accreted assuming they formed within an impact-generated accretion disk. A comparison of our results with the present day spectral properties of the moons allows us to conclude that their building blocks cannot originate from a magma phase, thus preventing their formation in the innermost part of the disk. Instead, gas-to-solid condensation of the building blocks in the outer part of an extended gaseous disk is found as a possible formation mechanism as it does allow reproducing both the spectral and physical properties of the moons. Such a scenario may finally reconcile their orbital and physical properties alleviating the need to invoke an unlikely capture scenario to explain their physical properties.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1607.02350</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accretion disks ; Deimos ; Magma ; Mars ; Mars satellites ; Outer solar system ; Phobos ; Physical properties ; Solar system</subject><ispartof>arXiv.org, 2016-07</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080627967?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Ronnet, Thomas</creatorcontrib><creatorcontrib>Vernazza, Pierre</creatorcontrib><creatorcontrib>Mousis, Olivier</creatorcontrib><creatorcontrib>Brugger, Bastien</creatorcontrib><creatorcontrib>Beck, Pierre</creatorcontrib><creatorcontrib>Devouard, Bertrand</creatorcontrib><creatorcontrib>Witasse, Olivier</creatorcontrib><creatorcontrib>Cipriani, Fabrice</creatorcontrib><title>Reconceiling the orbital and physical properties of the martian moons</title><title>arXiv.org</title><description>The origin of Phobos and Deimos is still an open question. Currently, none of the three proposed scenarios for their origin (intact capture of two distinct outer solar system small bodies, co-accretion with Mars, and accretion within an impact-generated disk) is able to reconcile their orbital and physical properties. Here, we investigate the expected mineralogical composition and size of the grains from which the moons once accreted assuming they formed within an impact-generated accretion disk. A comparison of our results with the present day spectral properties of the moons allows us to conclude that their building blocks cannot originate from a magma phase, thus preventing their formation in the innermost part of the disk. Instead, gas-to-solid condensation of the building blocks in the outer part of an extended gaseous disk is found as a possible formation mechanism as it does allow reproducing both the spectral and physical properties of the moons. Such a scenario may finally reconcile their orbital and physical properties alleviating the need to invoke an unlikely capture scenario to explain their physical properties.</description><subject>Accretion disks</subject><subject>Deimos</subject><subject>Magma</subject><subject>Mars</subject><subject>Mars satellites</subject><subject>Outer solar system</subject><subject>Phobos</subject><subject>Physical properties</subject><subject>Solar system</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjl1LwzAYhYMgOOZ-gHcBr1uTN2-S9lLG_ICBILsfafLWdXRJbTrRf2_RXR0eODznMHYnRYmV1uLBjd_dVymNsKUApcUVW4BSsqgQ4Iatcj4KIcBY0Fot2OadfIqeur6LH3w6EE9j002u5y4GPhx-cudnGMY00Dh1lHlq_2onN6OL_JRSzLfsunV9ptUll2z3tNmtX4rt2_Pr-nFbOA22qAlDg5VC67S1ujWI5KQBI5UBTz7U6C0SKJKGgg0CZW3aqrZKB8TGqCW7_9fOdz7PlKf9MZ3HOC_uQVTCgK2NVb8oLkwn</recordid><startdate>20160708</startdate><enddate>20160708</enddate><creator>Ronnet, Thomas</creator><creator>Vernazza, Pierre</creator><creator>Mousis, Olivier</creator><creator>Brugger, Bastien</creator><creator>Beck, Pierre</creator><creator>Devouard, Bertrand</creator><creator>Witasse, Olivier</creator><creator>Cipriani, Fabrice</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160708</creationdate><title>Reconceiling the orbital and physical properties of the martian moons</title><author>Ronnet, Thomas ; Vernazza, Pierre ; Mousis, Olivier ; Brugger, Bastien ; Beck, Pierre ; Devouard, Bertrand ; Witasse, Olivier ; Cipriani, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-9e4db48347a5775f644ea16261362cecd94c74e23e16ed7d04196f89735d44b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accretion disks</topic><topic>Deimos</topic><topic>Magma</topic><topic>Mars</topic><topic>Mars satellites</topic><topic>Outer solar system</topic><topic>Phobos</topic><topic>Physical properties</topic><topic>Solar system</topic><toplevel>online_resources</toplevel><creatorcontrib>Ronnet, Thomas</creatorcontrib><creatorcontrib>Vernazza, Pierre</creatorcontrib><creatorcontrib>Mousis, Olivier</creatorcontrib><creatorcontrib>Brugger, Bastien</creatorcontrib><creatorcontrib>Beck, Pierre</creatorcontrib><creatorcontrib>Devouard, Bertrand</creatorcontrib><creatorcontrib>Witasse, Olivier</creatorcontrib><creatorcontrib>Cipriani, Fabrice</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ronnet, Thomas</au><au>Vernazza, Pierre</au><au>Mousis, Olivier</au><au>Brugger, Bastien</au><au>Beck, Pierre</au><au>Devouard, Bertrand</au><au>Witasse, Olivier</au><au>Cipriani, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconceiling the orbital and physical properties of the martian moons</atitle><jtitle>arXiv.org</jtitle><date>2016-07-08</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>The origin of Phobos and Deimos is still an open question. Currently, none of the three proposed scenarios for their origin (intact capture of two distinct outer solar system small bodies, co-accretion with Mars, and accretion within an impact-generated disk) is able to reconcile their orbital and physical properties. Here, we investigate the expected mineralogical composition and size of the grains from which the moons once accreted assuming they formed within an impact-generated accretion disk. A comparison of our results with the present day spectral properties of the moons allows us to conclude that their building blocks cannot originate from a magma phase, thus preventing their formation in the innermost part of the disk. Instead, gas-to-solid condensation of the building blocks in the outer part of an extended gaseous disk is found as a possible formation mechanism as it does allow reproducing both the spectral and physical properties of the moons. Such a scenario may finally reconcile their orbital and physical properties alleviating the need to invoke an unlikely capture scenario to explain their physical properties.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1607.02350</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080627967 |
source | Publicly Available Content Database |
subjects | Accretion disks Deimos Magma Mars Mars satellites Outer solar system Phobos Physical properties Solar system |
title | Reconceiling the orbital and physical properties of the martian moons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconceiling%20the%20orbital%20and%20physical%20properties%20of%20the%20martian%20moons&rft.jtitle=arXiv.org&rft.au=Ronnet,%20Thomas&rft.date=2016-07-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1607.02350&rft_dat=%3Cproquest%3E2080627967%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-9e4db48347a5775f644ea16261362cecd94c74e23e16ed7d04196f89735d44b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080627967&rft_id=info:pmid/&rfr_iscdi=true |