Loading…
Nonlinear Statistical Data Assimilation for HVC\(_{\text{RA}}\) Neurons in the Avian Song System
With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC\(_{\text{RA}}\) projection neurons comprised of a somatic compartment with fast Na\(^+\) and K\(^+\) currents and a dendritic compartment with slower Ca\(^{2+}\) dynamics. We show this...
Saved in:
Published in: | arXiv.org 2016-09 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kadakia, Nirag Armstrong, Eve Breen, Daniel Morone, Uriel Daou, Arij Margoliash, Daniel Henry DI Abarbanel |
description | With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC\(_{\text{RA}}\) projection neurons comprised of a somatic compartment with fast Na\(^+\) and K\(^+\) currents and a dendritic compartment with slower Ca\(^{2+}\) dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage \(V_s(t)\) alone. A key to this procedure is to initially estimate the slow dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca parameters fixed, estimate the fast Na and K dynamics. This separation of time scales provides a numerically robust method for completing the full neuron model, and the efficacy of the method is tested by prediction when observations are complete. The simulation provides a framework for the slice preparation experiments and illustrates the use of data assimilation methods for the design of those experiments. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080663944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080663944</sourcerecordid><originalsourceid>FETCH-proquest_journals_20806639443</originalsourceid><addsrcrecordid>eNqNirsKwjAUQIMgKNp_uOCigxCTtupYfNDJwYpToQZJNVITzb0VpfjvOvgBTgfOOS3WFVJOxrNQiA4LEC-ccxFPRRTJLjtsnK2M1cpDRooMkjmqCpaKFCSI5mqqr3UWSuch3S_yYdHkpJ_UbJP3Ox_BRtfeWQRjgc4akodRFjJnT5C9kPS1z9qlqlAHP_bYYL3aLdLxzbt7rZGKi6u9_aZC8BmPYzkPQ_nf9QG-zkRs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080663944</pqid></control><display><type>article</type><title>Nonlinear Statistical Data Assimilation for HVC\(_{\text{RA}}\) Neurons in the Avian Song System</title><source>Publicly Available Content Database</source><creator>Kadakia, Nirag ; Armstrong, Eve ; Breen, Daniel ; Morone, Uriel ; Daou, Arij ; Margoliash, Daniel ; Henry DI Abarbanel</creator><creatorcontrib>Kadakia, Nirag ; Armstrong, Eve ; Breen, Daniel ; Morone, Uriel ; Daou, Arij ; Margoliash, Daniel ; Henry DI Abarbanel</creatorcontrib><description>With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC\(_{\text{RA}}\) projection neurons comprised of a somatic compartment with fast Na\(^+\) and K\(^+\) currents and a dendritic compartment with slower Ca\(^{2+}\) dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage \(V_s(t)\) alone. A key to this procedure is to initially estimate the slow dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca parameters fixed, estimate the fast Na and K dynamics. This separation of time scales provides a numerically robust method for completing the full neuron model, and the efficacy of the method is tested by prediction when observations are complete. The simulation provides a framework for the slice preparation experiments and illustrates the use of data assimilation methods for the design of those experiments.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Experiments ; Feasibility studies ; Forecasting ; Neurons ; Parameter estimation ; Robustness (mathematics)</subject><ispartof>arXiv.org, 2016-09</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080663944?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Kadakia, Nirag</creatorcontrib><creatorcontrib>Armstrong, Eve</creatorcontrib><creatorcontrib>Breen, Daniel</creatorcontrib><creatorcontrib>Morone, Uriel</creatorcontrib><creatorcontrib>Daou, Arij</creatorcontrib><creatorcontrib>Margoliash, Daniel</creatorcontrib><creatorcontrib>Henry DI Abarbanel</creatorcontrib><title>Nonlinear Statistical Data Assimilation for HVC\(_{\text{RA}}\) Neurons in the Avian Song System</title><title>arXiv.org</title><description>With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC\(_{\text{RA}}\) projection neurons comprised of a somatic compartment with fast Na\(^+\) and K\(^+\) currents and a dendritic compartment with slower Ca\(^{2+}\) dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage \(V_s(t)\) alone. A key to this procedure is to initially estimate the slow dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca parameters fixed, estimate the fast Na and K dynamics. This separation of time scales provides a numerically robust method for completing the full neuron model, and the efficacy of the method is tested by prediction when observations are complete. The simulation provides a framework for the slice preparation experiments and illustrates the use of data assimilation methods for the design of those experiments.</description><subject>Computer simulation</subject><subject>Experiments</subject><subject>Feasibility studies</subject><subject>Forecasting</subject><subject>Neurons</subject><subject>Parameter estimation</subject><subject>Robustness (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirsKwjAUQIMgKNp_uOCigxCTtupYfNDJwYpToQZJNVITzb0VpfjvOvgBTgfOOS3WFVJOxrNQiA4LEC-ccxFPRRTJLjtsnK2M1cpDRooMkjmqCpaKFCSI5mqqr3UWSuch3S_yYdHkpJ_UbJP3Ox_BRtfeWQRjgc4akodRFjJnT5C9kPS1z9qlqlAHP_bYYL3aLdLxzbt7rZGKi6u9_aZC8BmPYzkPQ_nf9QG-zkRs</recordid><startdate>20160929</startdate><enddate>20160929</enddate><creator>Kadakia, Nirag</creator><creator>Armstrong, Eve</creator><creator>Breen, Daniel</creator><creator>Morone, Uriel</creator><creator>Daou, Arij</creator><creator>Margoliash, Daniel</creator><creator>Henry DI Abarbanel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160929</creationdate><title>Nonlinear Statistical Data Assimilation for HVC\(_{\text{RA}}\) Neurons in the Avian Song System</title><author>Kadakia, Nirag ; Armstrong, Eve ; Breen, Daniel ; Morone, Uriel ; Daou, Arij ; Margoliash, Daniel ; Henry DI Abarbanel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20806639443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer simulation</topic><topic>Experiments</topic><topic>Feasibility studies</topic><topic>Forecasting</topic><topic>Neurons</topic><topic>Parameter estimation</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Kadakia, Nirag</creatorcontrib><creatorcontrib>Armstrong, Eve</creatorcontrib><creatorcontrib>Breen, Daniel</creatorcontrib><creatorcontrib>Morone, Uriel</creatorcontrib><creatorcontrib>Daou, Arij</creatorcontrib><creatorcontrib>Margoliash, Daniel</creatorcontrib><creatorcontrib>Henry DI Abarbanel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadakia, Nirag</au><au>Armstrong, Eve</au><au>Breen, Daniel</au><au>Morone, Uriel</au><au>Daou, Arij</au><au>Margoliash, Daniel</au><au>Henry DI Abarbanel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nonlinear Statistical Data Assimilation for HVC\(_{\text{RA}}\) Neurons in the Avian Song System</atitle><jtitle>arXiv.org</jtitle><date>2016-09-29</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC\(_{\text{RA}}\) projection neurons comprised of a somatic compartment with fast Na\(^+\) and K\(^+\) currents and a dendritic compartment with slower Ca\(^{2+}\) dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage \(V_s(t)\) alone. A key to this procedure is to initially estimate the slow dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca parameters fixed, estimate the fast Na and K dynamics. This separation of time scales provides a numerically robust method for completing the full neuron model, and the efficacy of the method is tested by prediction when observations are complete. The simulation provides a framework for the slice preparation experiments and illustrates the use of data assimilation methods for the design of those experiments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080663944 |
source | Publicly Available Content Database |
subjects | Computer simulation Experiments Feasibility studies Forecasting Neurons Parameter estimation Robustness (mathematics) |
title | Nonlinear Statistical Data Assimilation for HVC\(_{\text{RA}}\) Neurons in the Avian Song System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nonlinear%20Statistical%20Data%20Assimilation%20for%20HVC%5C(_%7B%5Ctext%7BRA%7D%7D%5C)%20Neurons%20in%20the%20Avian%20Song%20System&rft.jtitle=arXiv.org&rft.au=Kadakia,%20Nirag&rft.date=2016-09-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080663944%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20806639443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080663944&rft_id=info:pmid/&rfr_iscdi=true |