Loading…

Nonlinear Statistical Data Assimilation for HVC\(_{\text{RA}}\) Neurons in the Avian Song System

With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC\(_{\text{RA}}\) projection neurons comprised of a somatic compartment with fast Na\(^+\) and K\(^+\) currents and a dendritic compartment with slower Ca\(^{2+}\) dynamics. We show this...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-09
Main Authors: Kadakia, Nirag, Armstrong, Eve, Breen, Daniel, Morone, Uriel, Daou, Arij, Margoliash, Daniel, Henry DI Abarbanel
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kadakia, Nirag
Armstrong, Eve
Breen, Daniel
Morone, Uriel
Daou, Arij
Margoliash, Daniel
Henry DI Abarbanel
description With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC\(_{\text{RA}}\) projection neurons comprised of a somatic compartment with fast Na\(^+\) and K\(^+\) currents and a dendritic compartment with slower Ca\(^{2+}\) dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage \(V_s(t)\) alone. A key to this procedure is to initially estimate the slow dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca parameters fixed, estimate the fast Na and K dynamics. This separation of time scales provides a numerically robust method for completing the full neuron model, and the efficacy of the method is tested by prediction when observations are complete. The simulation provides a framework for the slice preparation experiments and illustrates the use of data assimilation methods for the design of those experiments.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080663944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080663944</sourcerecordid><originalsourceid>FETCH-proquest_journals_20806639443</originalsourceid><addsrcrecordid>eNqNirsKwjAUQIMgKNp_uOCigxCTtupYfNDJwYpToQZJNVITzb0VpfjvOvgBTgfOOS3WFVJOxrNQiA4LEC-ccxFPRRTJLjtsnK2M1cpDRooMkjmqCpaKFCSI5mqqr3UWSuch3S_yYdHkpJ_UbJP3Ox_BRtfeWQRjgc4akodRFjJnT5C9kPS1z9qlqlAHP_bYYL3aLdLxzbt7rZGKi6u9_aZC8BmPYzkPQ_nf9QG-zkRs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080663944</pqid></control><display><type>article</type><title>Nonlinear Statistical Data Assimilation for HVC\(_{\text{RA}}\) Neurons in the Avian Song System</title><source>Publicly Available Content Database</source><creator>Kadakia, Nirag ; Armstrong, Eve ; Breen, Daniel ; Morone, Uriel ; Daou, Arij ; Margoliash, Daniel ; Henry DI Abarbanel</creator><creatorcontrib>Kadakia, Nirag ; Armstrong, Eve ; Breen, Daniel ; Morone, Uriel ; Daou, Arij ; Margoliash, Daniel ; Henry DI Abarbanel</creatorcontrib><description>With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC\(_{\text{RA}}\) projection neurons comprised of a somatic compartment with fast Na\(^+\) and K\(^+\) currents and a dendritic compartment with slower Ca\(^{2+}\) dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage \(V_s(t)\) alone. A key to this procedure is to initially estimate the slow dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca parameters fixed, estimate the fast Na and K dynamics. This separation of time scales provides a numerically robust method for completing the full neuron model, and the efficacy of the method is tested by prediction when observations are complete. The simulation provides a framework for the slice preparation experiments and illustrates the use of data assimilation methods for the design of those experiments.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Experiments ; Feasibility studies ; Forecasting ; Neurons ; Parameter estimation ; Robustness (mathematics)</subject><ispartof>arXiv.org, 2016-09</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080663944?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Kadakia, Nirag</creatorcontrib><creatorcontrib>Armstrong, Eve</creatorcontrib><creatorcontrib>Breen, Daniel</creatorcontrib><creatorcontrib>Morone, Uriel</creatorcontrib><creatorcontrib>Daou, Arij</creatorcontrib><creatorcontrib>Margoliash, Daniel</creatorcontrib><creatorcontrib>Henry DI Abarbanel</creatorcontrib><title>Nonlinear Statistical Data Assimilation for HVC\(_{\text{RA}}\) Neurons in the Avian Song System</title><title>arXiv.org</title><description>With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC\(_{\text{RA}}\) projection neurons comprised of a somatic compartment with fast Na\(^+\) and K\(^+\) currents and a dendritic compartment with slower Ca\(^{2+}\) dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage \(V_s(t)\) alone. A key to this procedure is to initially estimate the slow dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca parameters fixed, estimate the fast Na and K dynamics. This separation of time scales provides a numerically robust method for completing the full neuron model, and the efficacy of the method is tested by prediction when observations are complete. The simulation provides a framework for the slice preparation experiments and illustrates the use of data assimilation methods for the design of those experiments.</description><subject>Computer simulation</subject><subject>Experiments</subject><subject>Feasibility studies</subject><subject>Forecasting</subject><subject>Neurons</subject><subject>Parameter estimation</subject><subject>Robustness (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirsKwjAUQIMgKNp_uOCigxCTtupYfNDJwYpToQZJNVITzb0VpfjvOvgBTgfOOS3WFVJOxrNQiA4LEC-ccxFPRRTJLjtsnK2M1cpDRooMkjmqCpaKFCSI5mqqr3UWSuch3S_yYdHkpJ_UbJP3Ox_BRtfeWQRjgc4akodRFjJnT5C9kPS1z9qlqlAHP_bYYL3aLdLxzbt7rZGKi6u9_aZC8BmPYzkPQ_nf9QG-zkRs</recordid><startdate>20160929</startdate><enddate>20160929</enddate><creator>Kadakia, Nirag</creator><creator>Armstrong, Eve</creator><creator>Breen, Daniel</creator><creator>Morone, Uriel</creator><creator>Daou, Arij</creator><creator>Margoliash, Daniel</creator><creator>Henry DI Abarbanel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160929</creationdate><title>Nonlinear Statistical Data Assimilation for HVC\(_{\text{RA}}\) Neurons in the Avian Song System</title><author>Kadakia, Nirag ; Armstrong, Eve ; Breen, Daniel ; Morone, Uriel ; Daou, Arij ; Margoliash, Daniel ; Henry DI Abarbanel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20806639443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer simulation</topic><topic>Experiments</topic><topic>Feasibility studies</topic><topic>Forecasting</topic><topic>Neurons</topic><topic>Parameter estimation</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Kadakia, Nirag</creatorcontrib><creatorcontrib>Armstrong, Eve</creatorcontrib><creatorcontrib>Breen, Daniel</creatorcontrib><creatorcontrib>Morone, Uriel</creatorcontrib><creatorcontrib>Daou, Arij</creatorcontrib><creatorcontrib>Margoliash, Daniel</creatorcontrib><creatorcontrib>Henry DI Abarbanel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadakia, Nirag</au><au>Armstrong, Eve</au><au>Breen, Daniel</au><au>Morone, Uriel</au><au>Daou, Arij</au><au>Margoliash, Daniel</au><au>Henry DI Abarbanel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nonlinear Statistical Data Assimilation for HVC\(_{\text{RA}}\) Neurons in the Avian Song System</atitle><jtitle>arXiv.org</jtitle><date>2016-09-29</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC\(_{\text{RA}}\) projection neurons comprised of a somatic compartment with fast Na\(^+\) and K\(^+\) currents and a dendritic compartment with slower Ca\(^{2+}\) dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage \(V_s(t)\) alone. A key to this procedure is to initially estimate the slow dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca parameters fixed, estimate the fast Na and K dynamics. This separation of time scales provides a numerically robust method for completing the full neuron model, and the efficacy of the method is tested by prediction when observations are complete. The simulation provides a framework for the slice preparation experiments and illustrates the use of data assimilation methods for the design of those experiments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080663944
source Publicly Available Content Database
subjects Computer simulation
Experiments
Feasibility studies
Forecasting
Neurons
Parameter estimation
Robustness (mathematics)
title Nonlinear Statistical Data Assimilation for HVC\(_{\text{RA}}\) Neurons in the Avian Song System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nonlinear%20Statistical%20Data%20Assimilation%20for%20HVC%5C(_%7B%5Ctext%7BRA%7D%7D%5C)%20Neurons%20in%20the%20Avian%20Song%20System&rft.jtitle=arXiv.org&rft.au=Kadakia,%20Nirag&rft.date=2016-09-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080663944%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20806639443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080663944&rft_id=info:pmid/&rfr_iscdi=true