Loading…

On the Stability and the Exponential Concentration of Extended Kalman-Bucy filters

The exponential stability and the concentration properties of a class of extended Kalman-Bucy filters are analyzed. New estimation concentration inequalities around partially observed signals are derived in terms of the stability properties of the filters. These non asymptotic exponential inequaliti...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-10
Main Authors: Pierre Del Moral, Kurtzmann, Aline, Tugaut, Julian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pierre Del Moral
Kurtzmann, Aline
Tugaut, Julian
description The exponential stability and the concentration properties of a class of extended Kalman-Bucy filters are analyzed. New estimation concentration inequalities around partially observed signals are derived in terms of the stability properties of the filters. These non asymptotic exponential inequalities allow to design confidence interval type estimates in terms of the filter forgetting properties with respect to erroneous initial conditions. For uniformly stable signals, we also provide explicit non-asymptotic estimates for the exponential forgetting rate of the filters and the associated stochastic Riccati equations w.r.t. Frobenius norms. These non asymptotic exponential concentration and quantitative stability estimates seem to be the first results of this type for this class of nonlinear filters. Our techniques combine \(\chi\)-square concentration inequalities and Laplace estimates with spectral and random matrices theory, and the non asymptotic stability theory of quadratic type stochastic processes.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080793714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080793714</sourcerecordid><originalsourceid>FETCH-proquest_journals_20807937143</originalsourceid><addsrcrecordid>eNqNitEKgjAYRkcQJOU7DLoW5qZpt4kRdBFU9zJ10mT9s-0X8u2T6AG6-g7nfAsScCHiKE84X5HQ-54xxncZT1MRkOsFKD4UvaGstdE4UQnt15TvwYIC1NLQwkIzo5OoLVDbzREVtKqlZ2meEqLD2Ey00waV8xuy7KTxKvztmmyP5b04RYOzr1F5rHo7OphTxVnOsr3I4kT89_oAyNM_gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080793714</pqid></control><display><type>article</type><title>On the Stability and the Exponential Concentration of Extended Kalman-Bucy filters</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Pierre Del Moral ; Kurtzmann, Aline ; Tugaut, Julian</creator><creatorcontrib>Pierre Del Moral ; Kurtzmann, Aline ; Tugaut, Julian</creatorcontrib><description>The exponential stability and the concentration properties of a class of extended Kalman-Bucy filters are analyzed. New estimation concentration inequalities around partially observed signals are derived in terms of the stability properties of the filters. These non asymptotic exponential inequalities allow to design confidence interval type estimates in terms of the filter forgetting properties with respect to erroneous initial conditions. For uniformly stable signals, we also provide explicit non-asymptotic estimates for the exponential forgetting rate of the filters and the associated stochastic Riccati equations w.r.t. Frobenius norms. These non asymptotic exponential concentration and quantitative stability estimates seem to be the first results of this type for this class of nonlinear filters. Our techniques combine \(\chi\)-square concentration inequalities and Laplace estimates with spectral and random matrices theory, and the non asymptotic stability theory of quadratic type stochastic processes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Confidence intervals ; Estimates ; Inequalities ; Initial conditions ; Nonlinear filters ; Norms ; Stability ; Stochastic processes</subject><ispartof>arXiv.org, 2016-10</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080793714?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Pierre Del Moral</creatorcontrib><creatorcontrib>Kurtzmann, Aline</creatorcontrib><creatorcontrib>Tugaut, Julian</creatorcontrib><title>On the Stability and the Exponential Concentration of Extended Kalman-Bucy filters</title><title>arXiv.org</title><description>The exponential stability and the concentration properties of a class of extended Kalman-Bucy filters are analyzed. New estimation concentration inequalities around partially observed signals are derived in terms of the stability properties of the filters. These non asymptotic exponential inequalities allow to design confidence interval type estimates in terms of the filter forgetting properties with respect to erroneous initial conditions. For uniformly stable signals, we also provide explicit non-asymptotic estimates for the exponential forgetting rate of the filters and the associated stochastic Riccati equations w.r.t. Frobenius norms. These non asymptotic exponential concentration and quantitative stability estimates seem to be the first results of this type for this class of nonlinear filters. Our techniques combine \(\chi\)-square concentration inequalities and Laplace estimates with spectral and random matrices theory, and the non asymptotic stability theory of quadratic type stochastic processes.</description><subject>Asymptotic properties</subject><subject>Confidence intervals</subject><subject>Estimates</subject><subject>Inequalities</subject><subject>Initial conditions</subject><subject>Nonlinear filters</subject><subject>Norms</subject><subject>Stability</subject><subject>Stochastic processes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNitEKgjAYRkcQJOU7DLoW5qZpt4kRdBFU9zJ10mT9s-0X8u2T6AG6-g7nfAsScCHiKE84X5HQ-54xxncZT1MRkOsFKD4UvaGstdE4UQnt15TvwYIC1NLQwkIzo5OoLVDbzREVtKqlZ2meEqLD2Ey00waV8xuy7KTxKvztmmyP5b04RYOzr1F5rHo7OphTxVnOsr3I4kT89_oAyNM_gQ</recordid><startdate>20161004</startdate><enddate>20161004</enddate><creator>Pierre Del Moral</creator><creator>Kurtzmann, Aline</creator><creator>Tugaut, Julian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161004</creationdate><title>On the Stability and the Exponential Concentration of Extended Kalman-Bucy filters</title><author>Pierre Del Moral ; Kurtzmann, Aline ; Tugaut, Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20807937143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Confidence intervals</topic><topic>Estimates</topic><topic>Inequalities</topic><topic>Initial conditions</topic><topic>Nonlinear filters</topic><topic>Norms</topic><topic>Stability</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Pierre Del Moral</creatorcontrib><creatorcontrib>Kurtzmann, Aline</creatorcontrib><creatorcontrib>Tugaut, Julian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierre Del Moral</au><au>Kurtzmann, Aline</au><au>Tugaut, Julian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Stability and the Exponential Concentration of Extended Kalman-Bucy filters</atitle><jtitle>arXiv.org</jtitle><date>2016-10-04</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>The exponential stability and the concentration properties of a class of extended Kalman-Bucy filters are analyzed. New estimation concentration inequalities around partially observed signals are derived in terms of the stability properties of the filters. These non asymptotic exponential inequalities allow to design confidence interval type estimates in terms of the filter forgetting properties with respect to erroneous initial conditions. For uniformly stable signals, we also provide explicit non-asymptotic estimates for the exponential forgetting rate of the filters and the associated stochastic Riccati equations w.r.t. Frobenius norms. These non asymptotic exponential concentration and quantitative stability estimates seem to be the first results of this type for this class of nonlinear filters. Our techniques combine \(\chi\)-square concentration inequalities and Laplace estimates with spectral and random matrices theory, and the non asymptotic stability theory of quadratic type stochastic processes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080793714
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Asymptotic properties
Confidence intervals
Estimates
Inequalities
Initial conditions
Nonlinear filters
Norms
Stability
Stochastic processes
title On the Stability and the Exponential Concentration of Extended Kalman-Bucy filters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Stability%20and%20the%20Exponential%20Concentration%20of%20Extended%20Kalman-Bucy%20filters&rft.jtitle=arXiv.org&rft.au=Pierre%20Del%20Moral&rft.date=2016-10-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080793714%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20807937143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080793714&rft_id=info:pmid/&rfr_iscdi=true