Loading…
On the Stability and the Exponential Concentration of Extended Kalman-Bucy filters
The exponential stability and the concentration properties of a class of extended Kalman-Bucy filters are analyzed. New estimation concentration inequalities around partially observed signals are derived in terms of the stability properties of the filters. These non asymptotic exponential inequaliti...
Saved in:
Published in: | arXiv.org 2016-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pierre Del Moral Kurtzmann, Aline Tugaut, Julian |
description | The exponential stability and the concentration properties of a class of extended Kalman-Bucy filters are analyzed. New estimation concentration inequalities around partially observed signals are derived in terms of the stability properties of the filters. These non asymptotic exponential inequalities allow to design confidence interval type estimates in terms of the filter forgetting properties with respect to erroneous initial conditions. For uniformly stable signals, we also provide explicit non-asymptotic estimates for the exponential forgetting rate of the filters and the associated stochastic Riccati equations w.r.t. Frobenius norms. These non asymptotic exponential concentration and quantitative stability estimates seem to be the first results of this type for this class of nonlinear filters. Our techniques combine \(\chi\)-square concentration inequalities and Laplace estimates with spectral and random matrices theory, and the non asymptotic stability theory of quadratic type stochastic processes. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080793714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080793714</sourcerecordid><originalsourceid>FETCH-proquest_journals_20807937143</originalsourceid><addsrcrecordid>eNqNitEKgjAYRkcQJOU7DLoW5qZpt4kRdBFU9zJ10mT9s-0X8u2T6AG6-g7nfAsScCHiKE84X5HQ-54xxncZT1MRkOsFKD4UvaGstdE4UQnt15TvwYIC1NLQwkIzo5OoLVDbzREVtKqlZ2meEqLD2Ey00waV8xuy7KTxKvztmmyP5b04RYOzr1F5rHo7OphTxVnOsr3I4kT89_oAyNM_gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080793714</pqid></control><display><type>article</type><title>On the Stability and the Exponential Concentration of Extended Kalman-Bucy filters</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Pierre Del Moral ; Kurtzmann, Aline ; Tugaut, Julian</creator><creatorcontrib>Pierre Del Moral ; Kurtzmann, Aline ; Tugaut, Julian</creatorcontrib><description>The exponential stability and the concentration properties of a class of extended Kalman-Bucy filters are analyzed. New estimation concentration inequalities around partially observed signals are derived in terms of the stability properties of the filters. These non asymptotic exponential inequalities allow to design confidence interval type estimates in terms of the filter forgetting properties with respect to erroneous initial conditions. For uniformly stable signals, we also provide explicit non-asymptotic estimates for the exponential forgetting rate of the filters and the associated stochastic Riccati equations w.r.t. Frobenius norms. These non asymptotic exponential concentration and quantitative stability estimates seem to be the first results of this type for this class of nonlinear filters. Our techniques combine \(\chi\)-square concentration inequalities and Laplace estimates with spectral and random matrices theory, and the non asymptotic stability theory of quadratic type stochastic processes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Confidence intervals ; Estimates ; Inequalities ; Initial conditions ; Nonlinear filters ; Norms ; Stability ; Stochastic processes</subject><ispartof>arXiv.org, 2016-10</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080793714?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Pierre Del Moral</creatorcontrib><creatorcontrib>Kurtzmann, Aline</creatorcontrib><creatorcontrib>Tugaut, Julian</creatorcontrib><title>On the Stability and the Exponential Concentration of Extended Kalman-Bucy filters</title><title>arXiv.org</title><description>The exponential stability and the concentration properties of a class of extended Kalman-Bucy filters are analyzed. New estimation concentration inequalities around partially observed signals are derived in terms of the stability properties of the filters. These non asymptotic exponential inequalities allow to design confidence interval type estimates in terms of the filter forgetting properties with respect to erroneous initial conditions. For uniformly stable signals, we also provide explicit non-asymptotic estimates for the exponential forgetting rate of the filters and the associated stochastic Riccati equations w.r.t. Frobenius norms. These non asymptotic exponential concentration and quantitative stability estimates seem to be the first results of this type for this class of nonlinear filters. Our techniques combine \(\chi\)-square concentration inequalities and Laplace estimates with spectral and random matrices theory, and the non asymptotic stability theory of quadratic type stochastic processes.</description><subject>Asymptotic properties</subject><subject>Confidence intervals</subject><subject>Estimates</subject><subject>Inequalities</subject><subject>Initial conditions</subject><subject>Nonlinear filters</subject><subject>Norms</subject><subject>Stability</subject><subject>Stochastic processes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNitEKgjAYRkcQJOU7DLoW5qZpt4kRdBFU9zJ10mT9s-0X8u2T6AG6-g7nfAsScCHiKE84X5HQ-54xxncZT1MRkOsFKD4UvaGstdE4UQnt15TvwYIC1NLQwkIzo5OoLVDbzREVtKqlZ2meEqLD2Ey00waV8xuy7KTxKvztmmyP5b04RYOzr1F5rHo7OphTxVnOsr3I4kT89_oAyNM_gQ</recordid><startdate>20161004</startdate><enddate>20161004</enddate><creator>Pierre Del Moral</creator><creator>Kurtzmann, Aline</creator><creator>Tugaut, Julian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161004</creationdate><title>On the Stability and the Exponential Concentration of Extended Kalman-Bucy filters</title><author>Pierre Del Moral ; Kurtzmann, Aline ; Tugaut, Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20807937143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Confidence intervals</topic><topic>Estimates</topic><topic>Inequalities</topic><topic>Initial conditions</topic><topic>Nonlinear filters</topic><topic>Norms</topic><topic>Stability</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Pierre Del Moral</creatorcontrib><creatorcontrib>Kurtzmann, Aline</creatorcontrib><creatorcontrib>Tugaut, Julian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierre Del Moral</au><au>Kurtzmann, Aline</au><au>Tugaut, Julian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Stability and the Exponential Concentration of Extended Kalman-Bucy filters</atitle><jtitle>arXiv.org</jtitle><date>2016-10-04</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>The exponential stability and the concentration properties of a class of extended Kalman-Bucy filters are analyzed. New estimation concentration inequalities around partially observed signals are derived in terms of the stability properties of the filters. These non asymptotic exponential inequalities allow to design confidence interval type estimates in terms of the filter forgetting properties with respect to erroneous initial conditions. For uniformly stable signals, we also provide explicit non-asymptotic estimates for the exponential forgetting rate of the filters and the associated stochastic Riccati equations w.r.t. Frobenius norms. These non asymptotic exponential concentration and quantitative stability estimates seem to be the first results of this type for this class of nonlinear filters. Our techniques combine \(\chi\)-square concentration inequalities and Laplace estimates with spectral and random matrices theory, and the non asymptotic stability theory of quadratic type stochastic processes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080793714 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Asymptotic properties Confidence intervals Estimates Inequalities Initial conditions Nonlinear filters Norms Stability Stochastic processes |
title | On the Stability and the Exponential Concentration of Extended Kalman-Bucy filters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Stability%20and%20the%20Exponential%20Concentration%20of%20Extended%20Kalman-Bucy%20filters&rft.jtitle=arXiv.org&rft.au=Pierre%20Del%20Moral&rft.date=2016-10-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080793714%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20807937143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080793714&rft_id=info:pmid/&rfr_iscdi=true |