Loading…
Dispersive thermometry with a Josephson junction coupled to a resonator
We have embedded a small Josephson junction in a microwave resonator that allows simultaneous dc biasing and dispersive readout. Thermal fluctuations drive the junction into phase diffusion and induce a temperature-dependent shift in the resonance frequency. By sensing the thermal noise of a remote...
Saved in:
Published in: | arXiv.org 2016-07 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | O -P Saira Zgirski, M Viisanen, K L Golubev, D S Pekola, J P |
description | We have embedded a small Josephson junction in a microwave resonator that allows simultaneous dc biasing and dispersive readout. Thermal fluctuations drive the junction into phase diffusion and induce a temperature-dependent shift in the resonance frequency. By sensing the thermal noise of a remote resistor in this manner, we demonstrate primary thermometry in the range from 300 mK to below 100 mK, and high-bandwidth (7.5 MHz) operation with a noise-equivalent temperature of better than 10 \(\mathrm{\mu K/\sqrt{Hz}}\). At a finite bias voltage close to a Fiske resonance, amplification of the microwave probe signal is observed. We develop an accurate theoretical model of our device based on the theory of dynamical Coulomb blockade. |
doi_str_mv | 10.48550/arxiv.1604.05089 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080888750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080888750</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-4c732c2f303e0f37f32f7e09044aa9f0fdcd9a4fdf4473eab1e1190d2d3047b83</originalsourceid><addsrcrecordid>eNotjVFLwzAURoMgOOZ-gG8Bn1tvcpMlfZSpUxn4sveRtTe0ZWtqkk799xb06Xxw4DuM3QkoldUaHlz87i6lWIMqQYOtrthCIorCKilv2CqlHgDk2kitccG2T10aKabuQjy3FM_hTDn-8K8ut9zx95BobFMYeD8Nde7mUYdpPFHDc5h9pNm5HOItu_bulGj1zyXbvzzvN6_F7mP7tnncFU5LKFRtUNbSIyCBR-NRekNQgVLOVR58UzeVU77xShkkdxQkRAWNbBCUOVpcsvu_2zGGz4lSPvRhisNcPEiwYK01GvAXbuNOPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080888750</pqid></control><display><type>article</type><title>Dispersive thermometry with a Josephson junction coupled to a resonator</title><source>ProQuest - Publicly Available Content Database</source><creator>O -P Saira ; Zgirski, M ; Viisanen, K L ; Golubev, D S ; Pekola, J P</creator><creatorcontrib>O -P Saira ; Zgirski, M ; Viisanen, K L ; Golubev, D S ; Pekola, J P</creatorcontrib><description>We have embedded a small Josephson junction in a microwave resonator that allows simultaneous dc biasing and dispersive readout. Thermal fluctuations drive the junction into phase diffusion and induce a temperature-dependent shift in the resonance frequency. By sensing the thermal noise of a remote resistor in this manner, we demonstrate primary thermometry in the range from 300 mK to below 100 mK, and high-bandwidth (7.5 MHz) operation with a noise-equivalent temperature of better than 10 \(\mathrm{\mu K/\sqrt{Hz}}\). At a finite bias voltage close to a Fiske resonance, amplification of the microwave probe signal is observed. We develop an accurate theoretical model of our device based on the theory of dynamical Coulomb blockade.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1604.05089</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dispersion ; Josephson junctions ; Microwave probes ; Quantum theory ; Remote sensing ; Resonators ; Temperature dependence ; Thermal noise ; Variations</subject><ispartof>arXiv.org, 2016-07</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080888750?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>O -P Saira</creatorcontrib><creatorcontrib>Zgirski, M</creatorcontrib><creatorcontrib>Viisanen, K L</creatorcontrib><creatorcontrib>Golubev, D S</creatorcontrib><creatorcontrib>Pekola, J P</creatorcontrib><title>Dispersive thermometry with a Josephson junction coupled to a resonator</title><title>arXiv.org</title><description>We have embedded a small Josephson junction in a microwave resonator that allows simultaneous dc biasing and dispersive readout. Thermal fluctuations drive the junction into phase diffusion and induce a temperature-dependent shift in the resonance frequency. By sensing the thermal noise of a remote resistor in this manner, we demonstrate primary thermometry in the range from 300 mK to below 100 mK, and high-bandwidth (7.5 MHz) operation with a noise-equivalent temperature of better than 10 \(\mathrm{\mu K/\sqrt{Hz}}\). At a finite bias voltage close to a Fiske resonance, amplification of the microwave probe signal is observed. We develop an accurate theoretical model of our device based on the theory of dynamical Coulomb blockade.</description><subject>Dispersion</subject><subject>Josephson junctions</subject><subject>Microwave probes</subject><subject>Quantum theory</subject><subject>Remote sensing</subject><subject>Resonators</subject><subject>Temperature dependence</subject><subject>Thermal noise</subject><subject>Variations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjVFLwzAURoMgOOZ-gG8Bn1tvcpMlfZSpUxn4sveRtTe0ZWtqkk799xb06Xxw4DuM3QkoldUaHlz87i6lWIMqQYOtrthCIorCKilv2CqlHgDk2kitccG2T10aKabuQjy3FM_hTDn-8K8ut9zx95BobFMYeD8Nde7mUYdpPFHDc5h9pNm5HOItu_bulGj1zyXbvzzvN6_F7mP7tnncFU5LKFRtUNbSIyCBR-NRekNQgVLOVR58UzeVU77xShkkdxQkRAWNbBCUOVpcsvu_2zGGz4lSPvRhisNcPEiwYK01GvAXbuNOPA</recordid><startdate>20160721</startdate><enddate>20160721</enddate><creator>O -P Saira</creator><creator>Zgirski, M</creator><creator>Viisanen, K L</creator><creator>Golubev, D S</creator><creator>Pekola, J P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160721</creationdate><title>Dispersive thermometry with a Josephson junction coupled to a resonator</title><author>O -P Saira ; Zgirski, M ; Viisanen, K L ; Golubev, D S ; Pekola, J P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-4c732c2f303e0f37f32f7e09044aa9f0fdcd9a4fdf4473eab1e1190d2d3047b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Dispersion</topic><topic>Josephson junctions</topic><topic>Microwave probes</topic><topic>Quantum theory</topic><topic>Remote sensing</topic><topic>Resonators</topic><topic>Temperature dependence</topic><topic>Thermal noise</topic><topic>Variations</topic><toplevel>online_resources</toplevel><creatorcontrib>O -P Saira</creatorcontrib><creatorcontrib>Zgirski, M</creatorcontrib><creatorcontrib>Viisanen, K L</creatorcontrib><creatorcontrib>Golubev, D S</creatorcontrib><creatorcontrib>Pekola, J P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O -P Saira</au><au>Zgirski, M</au><au>Viisanen, K L</au><au>Golubev, D S</au><au>Pekola, J P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersive thermometry with a Josephson junction coupled to a resonator</atitle><jtitle>arXiv.org</jtitle><date>2016-07-21</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We have embedded a small Josephson junction in a microwave resonator that allows simultaneous dc biasing and dispersive readout. Thermal fluctuations drive the junction into phase diffusion and induce a temperature-dependent shift in the resonance frequency. By sensing the thermal noise of a remote resistor in this manner, we demonstrate primary thermometry in the range from 300 mK to below 100 mK, and high-bandwidth (7.5 MHz) operation with a noise-equivalent temperature of better than 10 \(\mathrm{\mu K/\sqrt{Hz}}\). At a finite bias voltage close to a Fiske resonance, amplification of the microwave probe signal is observed. We develop an accurate theoretical model of our device based on the theory of dynamical Coulomb blockade.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1604.05089</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080888750 |
source | ProQuest - Publicly Available Content Database |
subjects | Dispersion Josephson junctions Microwave probes Quantum theory Remote sensing Resonators Temperature dependence Thermal noise Variations |
title | Dispersive thermometry with a Josephson junction coupled to a resonator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersive%20thermometry%20with%20a%20Josephson%20junction%20coupled%20to%20a%20resonator&rft.jtitle=arXiv.org&rft.au=O%20-P%20Saira&rft.date=2016-07-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1604.05089&rft_dat=%3Cproquest%3E2080888750%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-4c732c2f303e0f37f32f7e09044aa9f0fdcd9a4fdf4473eab1e1190d2d3047b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080888750&rft_id=info:pmid/&rfr_iscdi=true |