Loading…

Force-induced structural changes in non-sulfated carrageenan based oligosaccharides - a theoretical study

In this work we use the Enforced Geometry Optimization (EGO) approach to simulate force-induced structural changes in the monomer, and di- up to pentameric oligomers of neutral and non-sulfated carrageenan based oligosaccharides. Our results indicate that the monosaccharide unit sequence in the olig...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2018, Vol.14 (3), p.6264-6277
Main Authors: Brzyska, A, P azi ski, W, Woli ski, K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work we use the Enforced Geometry Optimization (EGO) approach to simulate force-induced structural changes in the monomer, and di- up to pentameric oligomers of neutral and non-sulfated carrageenan based oligosaccharides. Our results indicate that the monosaccharide unit sequence in the oligomeric structure determines: (i) the type(s) of the enforced conformational transition(s), and (ii) the mechanical resistance to external forces. It is a direct consequence of the different glycosidic bonding types in the examined carregeenan based oligosaccharides. In this work we use the Enforced Geometry Optimization (EGO) approach to simulate force-induced structural changes in the monomer, and di- up to pentameric oligomers of neutral and non-sulfated carrageenan based oligosaccharides.
ISSN:1744-683X
1744-6848
DOI:10.1039/c8sm00319j