Loading…
Connected Quandles Associated with Pointed Abelian Groups
A quandle is a self-distributive algebraic structure that appears in quasi-group and knot theories. For each abelian group A and c \in A we define a quandle G(A, c) on \Z_3 \times A. These quandles are generalizations of a class of non-medial Latin quandles defined by V. M. Galkin so we call them Ga...
Saved in:
Published in: | arXiv.org 2011-07 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A quandle is a self-distributive algebraic structure that appears in quasi-group and knot theories. For each abelian group A and c \in A we define a quandle G(A, c) on \Z_3 \times A. These quandles are generalizations of a class of non-medial Latin quandles defined by V. M. Galkin so we call them Galkin quandles. Each G(A, c) is connected but not Latin unless A has odd order. G(A, c) is non-medial unless 3A = 0. We classify their isomorphism classes in terms of pointed abelian groups, and study their various properties. A family of symmetric connected quandles is constructed from Galkin quandles, and some aspects of knot colorings by Galkin quandles are also discussed. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1107.5777 |