Loading…
Connected Quandles Associated with Pointed Abelian Groups
A quandle is a self-distributive algebraic structure that appears in quasi-group and knot theories. For each abelian group A and c \in A we define a quandle G(A, c) on \Z_3 \times A. These quandles are generalizations of a class of non-medial Latin quandles defined by V. M. Galkin so we call them Ga...
Saved in:
Published in: | arXiv.org 2011-07 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Clark, W Edwin Elhamdadi, Mohamed Xiang-dong, Hou Saito, Masahico Yeatman, Timothy |
description | A quandle is a self-distributive algebraic structure that appears in quasi-group and knot theories. For each abelian group A and c \in A we define a quandle G(A, c) on \Z_3 \times A. These quandles are generalizations of a class of non-medial Latin quandles defined by V. M. Galkin so we call them Galkin quandles. Each G(A, c) is connected but not Latin unless A has odd order. G(A, c) is non-medial unless 3A = 0. We classify their isomorphism classes in terms of pointed abelian groups, and study their various properties. A family of symmetric connected quandles is constructed from Galkin quandles, and some aspects of knot colorings by Galkin quandles are also discussed. |
doi_str_mv | 10.48550/arxiv.1107.5777 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080974399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080974399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a519-5550b15f603bd0ab4de0c2b503d983d083a46047bed0fdc0b81e1a5acc9f67923</originalsourceid><addsrcrecordid>eNotjktLw0AUhQdBsNTuXQZcJ9553MzMMgStQkGF7su8glPCTM0k6s-3RVeH8y3Odwi5o9AIhQgPZvqJXw2lIBuUUl6RFeOc1kowdkM2pRwBgLWSIfIV0X1OKbg5-Op9McmPoVRdKdlFc2Hfcf6o3nJMl9LZMEaTqu2Ul1O5JdeDGUvY_Oea7J8e9_1zvXvdvvTdrjZIdY3nR5bi0AK3HowVPoBjFoF7rbgHxY1oQUgbPAzegVU0UIPGOT20UjO-Jvd_s6cpfy6hzIdjXqZ0Nh4YKNBScK35L8UIR_0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080974399</pqid></control><display><type>article</type><title>Connected Quandles Associated with Pointed Abelian Groups</title><source>Publicly Available Content Database</source><creator>Clark, W Edwin ; Elhamdadi, Mohamed ; Xiang-dong, Hou ; Saito, Masahico ; Yeatman, Timothy</creator><creatorcontrib>Clark, W Edwin ; Elhamdadi, Mohamed ; Xiang-dong, Hou ; Saito, Masahico ; Yeatman, Timothy</creatorcontrib><description>A quandle is a self-distributive algebraic structure that appears in quasi-group and knot theories. For each abelian group A and c \in A we define a quandle G(A, c) on \Z_3 \times A. These quandles are generalizations of a class of non-medial Latin quandles defined by V. M. Galkin so we call them Galkin quandles. Each G(A, c) is connected but not Latin unless A has odd order. G(A, c) is non-medial unless 3A = 0. We classify their isomorphism classes in terms of pointed abelian groups, and study their various properties. A family of symmetric connected quandles is constructed from Galkin quandles, and some aspects of knot colorings by Galkin quandles are also discussed.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1107.5777</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Group theory ; Isomorphism</subject><ispartof>arXiv.org, 2011-07</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080974399?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Clark, W Edwin</creatorcontrib><creatorcontrib>Elhamdadi, Mohamed</creatorcontrib><creatorcontrib>Xiang-dong, Hou</creatorcontrib><creatorcontrib>Saito, Masahico</creatorcontrib><creatorcontrib>Yeatman, Timothy</creatorcontrib><title>Connected Quandles Associated with Pointed Abelian Groups</title><title>arXiv.org</title><description>A quandle is a self-distributive algebraic structure that appears in quasi-group and knot theories. For each abelian group A and c \in A we define a quandle G(A, c) on \Z_3 \times A. These quandles are generalizations of a class of non-medial Latin quandles defined by V. M. Galkin so we call them Galkin quandles. Each G(A, c) is connected but not Latin unless A has odd order. G(A, c) is non-medial unless 3A = 0. We classify their isomorphism classes in terms of pointed abelian groups, and study their various properties. A family of symmetric connected quandles is constructed from Galkin quandles, and some aspects of knot colorings by Galkin quandles are also discussed.</description><subject>Group theory</subject><subject>Isomorphism</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjktLw0AUhQdBsNTuXQZcJ9553MzMMgStQkGF7su8glPCTM0k6s-3RVeH8y3Odwi5o9AIhQgPZvqJXw2lIBuUUl6RFeOc1kowdkM2pRwBgLWSIfIV0X1OKbg5-Op9McmPoVRdKdlFc2Hfcf6o3nJMl9LZMEaTqu2Ul1O5JdeDGUvY_Oea7J8e9_1zvXvdvvTdrjZIdY3nR5bi0AK3HowVPoBjFoF7rbgHxY1oQUgbPAzegVU0UIPGOT20UjO-Jvd_s6cpfy6hzIdjXqZ0Nh4YKNBScK35L8UIR_0</recordid><startdate>20110728</startdate><enddate>20110728</enddate><creator>Clark, W Edwin</creator><creator>Elhamdadi, Mohamed</creator><creator>Xiang-dong, Hou</creator><creator>Saito, Masahico</creator><creator>Yeatman, Timothy</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110728</creationdate><title>Connected Quandles Associated with Pointed Abelian Groups</title><author>Clark, W Edwin ; Elhamdadi, Mohamed ; Xiang-dong, Hou ; Saito, Masahico ; Yeatman, Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a519-5550b15f603bd0ab4de0c2b503d983d083a46047bed0fdc0b81e1a5acc9f67923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Group theory</topic><topic>Isomorphism</topic><toplevel>online_resources</toplevel><creatorcontrib>Clark, W Edwin</creatorcontrib><creatorcontrib>Elhamdadi, Mohamed</creatorcontrib><creatorcontrib>Xiang-dong, Hou</creatorcontrib><creatorcontrib>Saito, Masahico</creatorcontrib><creatorcontrib>Yeatman, Timothy</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, W Edwin</au><au>Elhamdadi, Mohamed</au><au>Xiang-dong, Hou</au><au>Saito, Masahico</au><au>Yeatman, Timothy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connected Quandles Associated with Pointed Abelian Groups</atitle><jtitle>arXiv.org</jtitle><date>2011-07-28</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>A quandle is a self-distributive algebraic structure that appears in quasi-group and knot theories. For each abelian group A and c \in A we define a quandle G(A, c) on \Z_3 \times A. These quandles are generalizations of a class of non-medial Latin quandles defined by V. M. Galkin so we call them Galkin quandles. Each G(A, c) is connected but not Latin unless A has odd order. G(A, c) is non-medial unless 3A = 0. We classify their isomorphism classes in terms of pointed abelian groups, and study their various properties. A family of symmetric connected quandles is constructed from Galkin quandles, and some aspects of knot colorings by Galkin quandles are also discussed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1107.5777</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2011-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080974399 |
source | Publicly Available Content Database |
subjects | Group theory Isomorphism |
title | Connected Quandles Associated with Pointed Abelian Groups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connected%20Quandles%20Associated%20with%20Pointed%20Abelian%20Groups&rft.jtitle=arXiv.org&rft.au=Clark,%20W%20Edwin&rft.date=2011-07-28&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1107.5777&rft_dat=%3Cproquest%3E2080974399%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a519-5550b15f603bd0ab4de0c2b503d983d083a46047bed0fdc0b81e1a5acc9f67923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080974399&rft_id=info:pmid/&rfr_iscdi=true |