Loading…
Two-dimensional, homogeneous, isotropic fluid turbulence with polymer additives
We present the most extensive direct numerical simulations, attempted so far, of statistically steady, homogeneous, isotropic turbulence in two-dimensional fluid films with air-drag-induced friction and with polymer additives. Our study reveals that the polymers (a) reduce the total fluid energy, en...
Saved in:
Published in: | arXiv.org 2016-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present the most extensive direct numerical simulations, attempted so far, of statistically steady, homogeneous, isotropic turbulence in two-dimensional fluid films with air-drag-induced friction and with polymer additives. Our study reveals that the polymers (a) reduce the total fluid energy, enstrophy, and palinstrophy, (b) modify the fluid energy spectrum both in inverse- and forward-cascade regimes, (c) reduce small-scale intermittency, (d) suppress regions of large vorticity and strain rate, and (e) stretch in strain-dominated regions. We compare our results with earlier experimental studies; and we propose new experiments. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1207.4774 |