Loading…
On Choosability with Separation of Planar Graphs with Forbidden Cycles
We study choosability with separation which is a constrained version of list coloring of graphs. A (k,d)-list assignment L on a graph G is a function that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y) share at most d colors. A graph G...
Saved in:
Published in: | arXiv.org 2013-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Choi, Ilkyoo Lidický, Bernard Stolee, Derrick |
description | We study choosability with separation which is a constrained version of list coloring of graphs. A (k,d)-list assignment L on a graph G is a function that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y) share at most d colors. A graph G is (k,d)-choosable if there exists an L-coloring of G for every (k,d)-list assignment L. This concept is also known as choosability with separation. We prove that planar graphs without 4-cycles are (3,1)-choosable and that planar graphs without 5-cycles and 6-cycles are (3,1)-choosable. In addition, we give an alternative and slightly stronger proof that triangle-free planar graphs are \((3,1)\)-choosable. |
doi_str_mv | 10.48550/arxiv.1303.2753 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080996473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080996473</sourcerecordid><originalsourceid>FETCH-LOGICAL-a513-62fced3778b0946cc72f294234a8ecbce040425ef6ec2e98bd44665f970979703</originalsourceid><addsrcrecordid>eNotjc9LwzAcxYMgOObuHgOeW9Nvfh-l2CkMNnD3kaYJzShNTTp1_72FeXnv8nmfh9BTRUqmOCcvJv2G77KihJYgOb1DK6C0KhQDeECbnM-EEBASOKcr1OxHXPcxZtOGIcxX_BPmHn-6ySQzhzji6PFhMKNJeJvM1Ocb0MTUhq5zy_hqB5cf0b03Q3ab_16jY_N2rN-L3X77Ub_uCsMrWgjw1nVUStUSzYS1EjxoBpQZ5WxrHWGEAXdeOAtOq7ZjTAjutSRaLkHX6PmmnVL8urg8n87xksbl8QREEa0Fk5T-Af1fTAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080996473</pqid></control><display><type>article</type><title>On Choosability with Separation of Planar Graphs with Forbidden Cycles</title><source>ProQuest - Publicly Available Content Database</source><creator>Choi, Ilkyoo ; Lidický, Bernard ; Stolee, Derrick</creator><creatorcontrib>Choi, Ilkyoo ; Lidický, Bernard ; Stolee, Derrick</creatorcontrib><description>We study choosability with separation which is a constrained version of list coloring of graphs. A (k,d)-list assignment L on a graph G is a function that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y) share at most d colors. A graph G is (k,d)-choosable if there exists an L-coloring of G for every (k,d)-list assignment L. This concept is also known as choosability with separation. We prove that planar graphs without 4-cycles are (3,1)-choosable and that planar graphs without 5-cycles and 6-cycles are (3,1)-choosable. In addition, we give an alternative and slightly stronger proof that triangle-free planar graphs are \((3,1)\)-choosable.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1303.2753</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coloring ; Graphs ; Separation</subject><ispartof>arXiv.org, 2013-03</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2080996473?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Choi, Ilkyoo</creatorcontrib><creatorcontrib>Lidický, Bernard</creatorcontrib><creatorcontrib>Stolee, Derrick</creatorcontrib><title>On Choosability with Separation of Planar Graphs with Forbidden Cycles</title><title>arXiv.org</title><description>We study choosability with separation which is a constrained version of list coloring of graphs. A (k,d)-list assignment L on a graph G is a function that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y) share at most d colors. A graph G is (k,d)-choosable if there exists an L-coloring of G for every (k,d)-list assignment L. This concept is also known as choosability with separation. We prove that planar graphs without 4-cycles are (3,1)-choosable and that planar graphs without 5-cycles and 6-cycles are (3,1)-choosable. In addition, we give an alternative and slightly stronger proof that triangle-free planar graphs are \((3,1)\)-choosable.</description><subject>Coloring</subject><subject>Graphs</subject><subject>Separation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc9LwzAcxYMgOObuHgOeW9Nvfh-l2CkMNnD3kaYJzShNTTp1_72FeXnv8nmfh9BTRUqmOCcvJv2G77KihJYgOb1DK6C0KhQDeECbnM-EEBASOKcr1OxHXPcxZtOGIcxX_BPmHn-6ySQzhzji6PFhMKNJeJvM1Ocb0MTUhq5zy_hqB5cf0b03Q3ab_16jY_N2rN-L3X77Ub_uCsMrWgjw1nVUStUSzYS1EjxoBpQZ5WxrHWGEAXdeOAtOq7ZjTAjutSRaLkHX6PmmnVL8urg8n87xksbl8QREEa0Fk5T-Af1fTAg</recordid><startdate>20130312</startdate><enddate>20130312</enddate><creator>Choi, Ilkyoo</creator><creator>Lidický, Bernard</creator><creator>Stolee, Derrick</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130312</creationdate><title>On Choosability with Separation of Planar Graphs with Forbidden Cycles</title><author>Choi, Ilkyoo ; Lidický, Bernard ; Stolee, Derrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a513-62fced3778b0946cc72f294234a8ecbce040425ef6ec2e98bd44665f970979703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Coloring</topic><topic>Graphs</topic><topic>Separation</topic><toplevel>online_resources</toplevel><creatorcontrib>Choi, Ilkyoo</creatorcontrib><creatorcontrib>Lidický, Bernard</creatorcontrib><creatorcontrib>Stolee, Derrick</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Ilkyoo</au><au>Lidický, Bernard</au><au>Stolee, Derrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Choosability with Separation of Planar Graphs with Forbidden Cycles</atitle><jtitle>arXiv.org</jtitle><date>2013-03-12</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We study choosability with separation which is a constrained version of list coloring of graphs. A (k,d)-list assignment L on a graph G is a function that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y) share at most d colors. A graph G is (k,d)-choosable if there exists an L-coloring of G for every (k,d)-list assignment L. This concept is also known as choosability with separation. We prove that planar graphs without 4-cycles are (3,1)-choosable and that planar graphs without 5-cycles and 6-cycles are (3,1)-choosable. In addition, we give an alternative and slightly stronger proof that triangle-free planar graphs are \((3,1)\)-choosable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1303.2753</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080996473 |
source | ProQuest - Publicly Available Content Database |
subjects | Coloring Graphs Separation |
title | On Choosability with Separation of Planar Graphs with Forbidden Cycles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Choosability%20with%20Separation%20of%20Planar%20Graphs%20with%20Forbidden%20Cycles&rft.jtitle=arXiv.org&rft.au=Choi,%20Ilkyoo&rft.date=2013-03-12&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1303.2753&rft_dat=%3Cproquest%3E2080996473%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a513-62fced3778b0946cc72f294234a8ecbce040425ef6ec2e98bd44665f970979703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080996473&rft_id=info:pmid/&rfr_iscdi=true |