Loading…

Growth, characterization, and transport properties of ternary (Bi1-xSbx)2Te3 topological insulator layers

Ternary (Bi1-xSbx)2Te3 films with an Sb content between 0 and 100% were deposited on a Si(111) substrate by means of molecular beam epitaxy. X-ray diffraction measurements confirm single crystal growth in all cases. The Sb content is determined by X-ray photoelectron spectroscopy. Consistent values...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-10
Main Authors: Weyrich, C, Drögeler, M, Kampmeier, J, Eschbach, M, Mussler, G, Merzenich, T, Stoica, T, Batov, I E, Schubert, J, Plucinski, L, Beschoten, B, Schneider, C M, Stampfer, C, Grützmacher, D, Schäpers, Th
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Weyrich, C
Drögeler, M
Kampmeier, J
Eschbach, M
Mussler, G
Merzenich, T
Stoica, T
Batov, I E
Schubert, J
Plucinski, L
Beschoten, B
Schneider, C M
Stampfer, C
Grützmacher, D
Schäpers, Th
description Ternary (Bi1-xSbx)2Te3 films with an Sb content between 0 and 100% were deposited on a Si(111) substrate by means of molecular beam epitaxy. X-ray diffraction measurements confirm single crystal growth in all cases. The Sb content is determined by X-ray photoelectron spectroscopy. Consistent values of the Sb content are obtained from Raman spectroscopy. Scanning Raman spectroscopy reveals that the (Bi1-xSbx)2Te3 layers with an intermediate Sb content show spatial composition inhomogeneities. The observed spectra broadening in angular-resolved photoemission spectroscopy (ARPES) is also attributed to this phenomena. Upon increasing the Sb content from x=0 to 1 the ARPES measurements show a shift of the Fermi level from the conduction band to the valence band. This shift is also confirmed by corresponding magnetotransport measurements where the conductance changes from n- to p-type. In this transition region, an increase of the resistivity is found, indicating a location of the Fermi level within the band gap region. More detailed measurements in the transition region reveals that the transport takes place in two independent channels. By means of a gate electrode the transport can be changed from n- to p-type, thus allowing a tuning of the Fermi level within the topologically protected surface states.
doi_str_mv 10.48550/arxiv.1511.00965
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081056589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081056589</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-5d3957ed30b92daeb3983c107b09eb5bdf164db44c46f9199605dba01b9157d33</originalsourceid><addsrcrecordid>eNotjkFLwzAYQIMgOOZ-gLeAF4V1fkn6tc1Rh05h4MHdx5cmdRmlqUmm01_vQE_v8ng8xq4ELMoGEe4oHv3nQqAQCwBd4RmbSKVE0ZRSXrBZSnsAkFUtEdWE-VUMX3k35-2OIrXZRf9D2YdhzmmwPEca0hhi5mMMo4vZu8RDx0_eQPGb3zx4URzfzPFWbpziOYyhD---pZ77IR16yiHynr5dTJfsvKM-udk_p2zz9LhZPhfr19XL8n5dEEpdoFUaa2cVGC0tOaN0o1oBtQHtDBrbiaq0pizbsuq00LoCtIZAGC2wtkpN2fVf9jT8cXApb_fhcJrt01ZCIwArbLT6BeC3WfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081056589</pqid></control><display><type>article</type><title>Growth, characterization, and transport properties of ternary (Bi1-xSbx)2Te3 topological insulator layers</title><source>ProQuest - Publicly Available Content Database</source><creator>Weyrich, C ; Drögeler, M ; Kampmeier, J ; Eschbach, M ; Mussler, G ; Merzenich, T ; Stoica, T ; Batov, I E ; Schubert, J ; Plucinski, L ; Beschoten, B ; Schneider, C M ; Stampfer, C ; Grützmacher, D ; Schäpers, Th</creator><creatorcontrib>Weyrich, C ; Drögeler, M ; Kampmeier, J ; Eschbach, M ; Mussler, G ; Merzenich, T ; Stoica, T ; Batov, I E ; Schubert, J ; Plucinski, L ; Beschoten, B ; Schneider, C M ; Stampfer, C ; Grützmacher, D ; Schäpers, Th</creatorcontrib><description>Ternary (Bi1-xSbx)2Te3 films with an Sb content between 0 and 100% were deposited on a Si(111) substrate by means of molecular beam epitaxy. X-ray diffraction measurements confirm single crystal growth in all cases. The Sb content is determined by X-ray photoelectron spectroscopy. Consistent values of the Sb content are obtained from Raman spectroscopy. Scanning Raman spectroscopy reveals that the (Bi1-xSbx)2Te3 layers with an intermediate Sb content show spatial composition inhomogeneities. The observed spectra broadening in angular-resolved photoemission spectroscopy (ARPES) is also attributed to this phenomena. Upon increasing the Sb content from x=0 to 1 the ARPES measurements show a shift of the Fermi level from the conduction band to the valence band. This shift is also confirmed by corresponding magnetotransport measurements where the conductance changes from n- to p-type. In this transition region, an increase of the resistivity is found, indicating a location of the Fermi level within the band gap region. More detailed measurements in the transition region reveals that the transport takes place in two independent channels. By means of a gate electrode the transport can be changed from n- to p-type, thus allowing a tuning of the Fermi level within the topologically protected surface states.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1511.00965</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antimony ; Conduction bands ; Crystal growth ; Electrons ; Epitaxial growth ; Fermi level ; Fermi surfaces ; Molecular beam epitaxy ; Photoelectric emission ; Photoelectrons ; Protective coatings ; Raman spectroscopy ; Resistance ; Silicon substrates ; Single crystals ; Spectrum analysis ; Transport properties ; Valence band ; X-ray diffraction</subject><ispartof>arXiv.org, 2016-10</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2081056589?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Weyrich, C</creatorcontrib><creatorcontrib>Drögeler, M</creatorcontrib><creatorcontrib>Kampmeier, J</creatorcontrib><creatorcontrib>Eschbach, M</creatorcontrib><creatorcontrib>Mussler, G</creatorcontrib><creatorcontrib>Merzenich, T</creatorcontrib><creatorcontrib>Stoica, T</creatorcontrib><creatorcontrib>Batov, I E</creatorcontrib><creatorcontrib>Schubert, J</creatorcontrib><creatorcontrib>Plucinski, L</creatorcontrib><creatorcontrib>Beschoten, B</creatorcontrib><creatorcontrib>Schneider, C M</creatorcontrib><creatorcontrib>Stampfer, C</creatorcontrib><creatorcontrib>Grützmacher, D</creatorcontrib><creatorcontrib>Schäpers, Th</creatorcontrib><title>Growth, characterization, and transport properties of ternary (Bi1-xSbx)2Te3 topological insulator layers</title><title>arXiv.org</title><description>Ternary (Bi1-xSbx)2Te3 films with an Sb content between 0 and 100% were deposited on a Si(111) substrate by means of molecular beam epitaxy. X-ray diffraction measurements confirm single crystal growth in all cases. The Sb content is determined by X-ray photoelectron spectroscopy. Consistent values of the Sb content are obtained from Raman spectroscopy. Scanning Raman spectroscopy reveals that the (Bi1-xSbx)2Te3 layers with an intermediate Sb content show spatial composition inhomogeneities. The observed spectra broadening in angular-resolved photoemission spectroscopy (ARPES) is also attributed to this phenomena. Upon increasing the Sb content from x=0 to 1 the ARPES measurements show a shift of the Fermi level from the conduction band to the valence band. This shift is also confirmed by corresponding magnetotransport measurements where the conductance changes from n- to p-type. In this transition region, an increase of the resistivity is found, indicating a location of the Fermi level within the band gap region. More detailed measurements in the transition region reveals that the transport takes place in two independent channels. By means of a gate electrode the transport can be changed from n- to p-type, thus allowing a tuning of the Fermi level within the topologically protected surface states.</description><subject>Antimony</subject><subject>Conduction bands</subject><subject>Crystal growth</subject><subject>Electrons</subject><subject>Epitaxial growth</subject><subject>Fermi level</subject><subject>Fermi surfaces</subject><subject>Molecular beam epitaxy</subject><subject>Photoelectric emission</subject><subject>Photoelectrons</subject><subject>Protective coatings</subject><subject>Raman spectroscopy</subject><subject>Resistance</subject><subject>Silicon substrates</subject><subject>Single crystals</subject><subject>Spectrum analysis</subject><subject>Transport properties</subject><subject>Valence band</subject><subject>X-ray diffraction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjkFLwzAYQIMgOOZ-gLeAF4V1fkn6tc1Rh05h4MHdx5cmdRmlqUmm01_vQE_v8ng8xq4ELMoGEe4oHv3nQqAQCwBd4RmbSKVE0ZRSXrBZSnsAkFUtEdWE-VUMX3k35-2OIrXZRf9D2YdhzmmwPEca0hhi5mMMo4vZu8RDx0_eQPGb3zx4URzfzPFWbpziOYyhD---pZ77IR16yiHynr5dTJfsvKM-udk_p2zz9LhZPhfr19XL8n5dEEpdoFUaa2cVGC0tOaN0o1oBtQHtDBrbiaq0pizbsuq00LoCtIZAGC2wtkpN2fVf9jT8cXApb_fhcJrt01ZCIwArbLT6BeC3WfY</recordid><startdate>20161018</startdate><enddate>20161018</enddate><creator>Weyrich, C</creator><creator>Drögeler, M</creator><creator>Kampmeier, J</creator><creator>Eschbach, M</creator><creator>Mussler, G</creator><creator>Merzenich, T</creator><creator>Stoica, T</creator><creator>Batov, I E</creator><creator>Schubert, J</creator><creator>Plucinski, L</creator><creator>Beschoten, B</creator><creator>Schneider, C M</creator><creator>Stampfer, C</creator><creator>Grützmacher, D</creator><creator>Schäpers, Th</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161018</creationdate><title>Growth, characterization, and transport properties of ternary (Bi1-xSbx)2Te3 topological insulator layers</title><author>Weyrich, C ; Drögeler, M ; Kampmeier, J ; Eschbach, M ; Mussler, G ; Merzenich, T ; Stoica, T ; Batov, I E ; Schubert, J ; Plucinski, L ; Beschoten, B ; Schneider, C M ; Stampfer, C ; Grützmacher, D ; Schäpers, Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-5d3957ed30b92daeb3983c107b09eb5bdf164db44c46f9199605dba01b9157d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antimony</topic><topic>Conduction bands</topic><topic>Crystal growth</topic><topic>Electrons</topic><topic>Epitaxial growth</topic><topic>Fermi level</topic><topic>Fermi surfaces</topic><topic>Molecular beam epitaxy</topic><topic>Photoelectric emission</topic><topic>Photoelectrons</topic><topic>Protective coatings</topic><topic>Raman spectroscopy</topic><topic>Resistance</topic><topic>Silicon substrates</topic><topic>Single crystals</topic><topic>Spectrum analysis</topic><topic>Transport properties</topic><topic>Valence band</topic><topic>X-ray diffraction</topic><toplevel>online_resources</toplevel><creatorcontrib>Weyrich, C</creatorcontrib><creatorcontrib>Drögeler, M</creatorcontrib><creatorcontrib>Kampmeier, J</creatorcontrib><creatorcontrib>Eschbach, M</creatorcontrib><creatorcontrib>Mussler, G</creatorcontrib><creatorcontrib>Merzenich, T</creatorcontrib><creatorcontrib>Stoica, T</creatorcontrib><creatorcontrib>Batov, I E</creatorcontrib><creatorcontrib>Schubert, J</creatorcontrib><creatorcontrib>Plucinski, L</creatorcontrib><creatorcontrib>Beschoten, B</creatorcontrib><creatorcontrib>Schneider, C M</creatorcontrib><creatorcontrib>Stampfer, C</creatorcontrib><creatorcontrib>Grützmacher, D</creatorcontrib><creatorcontrib>Schäpers, Th</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weyrich, C</au><au>Drögeler, M</au><au>Kampmeier, J</au><au>Eschbach, M</au><au>Mussler, G</au><au>Merzenich, T</au><au>Stoica, T</au><au>Batov, I E</au><au>Schubert, J</au><au>Plucinski, L</au><au>Beschoten, B</au><au>Schneider, C M</au><au>Stampfer, C</au><au>Grützmacher, D</au><au>Schäpers, Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth, characterization, and transport properties of ternary (Bi1-xSbx)2Te3 topological insulator layers</atitle><jtitle>arXiv.org</jtitle><date>2016-10-18</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Ternary (Bi1-xSbx)2Te3 films with an Sb content between 0 and 100% were deposited on a Si(111) substrate by means of molecular beam epitaxy. X-ray diffraction measurements confirm single crystal growth in all cases. The Sb content is determined by X-ray photoelectron spectroscopy. Consistent values of the Sb content are obtained from Raman spectroscopy. Scanning Raman spectroscopy reveals that the (Bi1-xSbx)2Te3 layers with an intermediate Sb content show spatial composition inhomogeneities. The observed spectra broadening in angular-resolved photoemission spectroscopy (ARPES) is also attributed to this phenomena. Upon increasing the Sb content from x=0 to 1 the ARPES measurements show a shift of the Fermi level from the conduction band to the valence band. This shift is also confirmed by corresponding magnetotransport measurements where the conductance changes from n- to p-type. In this transition region, an increase of the resistivity is found, indicating a location of the Fermi level within the band gap region. More detailed measurements in the transition region reveals that the transport takes place in two independent channels. By means of a gate electrode the transport can be changed from n- to p-type, thus allowing a tuning of the Fermi level within the topologically protected surface states.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1511.00965</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081056589
source ProQuest - Publicly Available Content Database
subjects Antimony
Conduction bands
Crystal growth
Electrons
Epitaxial growth
Fermi level
Fermi surfaces
Molecular beam epitaxy
Photoelectric emission
Photoelectrons
Protective coatings
Raman spectroscopy
Resistance
Silicon substrates
Single crystals
Spectrum analysis
Transport properties
Valence band
X-ray diffraction
title Growth, characterization, and transport properties of ternary (Bi1-xSbx)2Te3 topological insulator layers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth,%20characterization,%20and%20transport%20properties%20of%20ternary%20(Bi1-xSbx)2Te3%20topological%20insulator%20layers&rft.jtitle=arXiv.org&rft.au=Weyrich,%20C&rft.date=2016-10-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1511.00965&rft_dat=%3Cproquest%3E2081056589%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-5d3957ed30b92daeb3983c107b09eb5bdf164db44c46f9199605dba01b9157d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2081056589&rft_id=info:pmid/&rfr_iscdi=true