Loading…
In-situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances
Thermal lensing in resonant optical interferometers such as those used for gravitational wave detection is a concern due to the negative impact on control signals and instrument sensitivity. In this paper we describe a method for monitoring the thermal state of such interferometers by probing the hi...
Saved in:
Published in: | arXiv.org 2015-02 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mueller, Chris L Fulda, Paul Adhikari, Rana X Arai, Koji Brooks, Aidan F Chakraborty, Rijuparna Frolov, Valery V Fritschel, Peter King, Eleanor J Tanner, David B Yamamoto, Hiroaki Mueller, Guido |
description | Thermal lensing in resonant optical interferometers such as those used for gravitational wave detection is a concern due to the negative impact on control signals and instrument sensitivity. In this paper we describe a method for monitoring the thermal state of such interferometers by probing the higher-order spatial mode resonances of the cavities within them. We demonstrate the use of this technique to measure changes in the Advanced LIGO input mode cleaner cavity geometry as a function of input power, and subsequently infer the optical absorption at the mirror surfaces at the level of 1 ppm per mirror. We also demonstrate the generation of a useful error signal for thermal state of the Advanced LIGO power recycling cavity by continuously tracking the first order spatial mode resonance frequency. Such an error signal could be used as an input to thermal compensation systems to maintain the interferometer cavity geometries in the presence of transients in circulating light power levels, thereby maintaining optimal sensitivity and maximizing the duty-cycle of the detectors. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081126015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081126015</sourcerecordid><originalsourceid>FETCH-proquest_journals_20811260153</originalsourceid><addsrcrecordid>eNqNjMGKwkAMhgdBUNR3COy5MJ1u1busrHfvMtTUxrUTTdI97Hkf3BH07uEnP_mSb-SmoarKYv0ZwsQtVM_e-7Bchbqupu5_lwolG6DposTGUOgvGnECbsE6fET6eAG1aPhYCiqnmAz4atRkQil_tSjcYy4KvxTBsuuH0ulpIYGOTtlUsBxRoOcjvkQN6tyN23hRXDznzH1sv_ab7-IqfBtQ7XDmQVJGh-DXZRmWvqyr967uQVRTWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081126015</pqid></control><display><type>article</type><title>In-situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances</title><source>Publicly Available Content Database</source><creator>Mueller, Chris L ; Fulda, Paul ; Adhikari, Rana X ; Arai, Koji ; Brooks, Aidan F ; Chakraborty, Rijuparna ; Frolov, Valery V ; Fritschel, Peter ; King, Eleanor J ; Tanner, David B ; Yamamoto, Hiroaki ; Mueller, Guido</creator><creatorcontrib>Mueller, Chris L ; Fulda, Paul ; Adhikari, Rana X ; Arai, Koji ; Brooks, Aidan F ; Chakraborty, Rijuparna ; Frolov, Valery V ; Fritschel, Peter ; King, Eleanor J ; Tanner, David B ; Yamamoto, Hiroaki ; Mueller, Guido</creatorcontrib><description>Thermal lensing in resonant optical interferometers such as those used for gravitational wave detection is a concern due to the negative impact on control signals and instrument sensitivity. In this paper we describe a method for monitoring the thermal state of such interferometers by probing the higher-order spatial mode resonances of the cavities within them. We demonstrate the use of this technique to measure changes in the Advanced LIGO input mode cleaner cavity geometry as a function of input power, and subsequently infer the optical absorption at the mirror surfaces at the level of 1 ppm per mirror. We also demonstrate the generation of a useful error signal for thermal state of the Advanced LIGO power recycling cavity by continuously tracking the first order spatial mode resonance frequency. Such an error signal could be used as an input to thermal compensation systems to maintain the interferometer cavity geometries in the presence of transients in circulating light power levels, thereby maintaining optimal sensitivity and maximizing the duty-cycle of the detectors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Control equipment ; Error signals ; Gravitational waves ; Holes ; Interferometers ; Light levels ; Optimization ; Sensitivity ; Thermal compensation ; Thermal lensing ; Thermodynamic properties ; Tracking</subject><ispartof>arXiv.org, 2015-02</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2081126015?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Mueller, Chris L</creatorcontrib><creatorcontrib>Fulda, Paul</creatorcontrib><creatorcontrib>Adhikari, Rana X</creatorcontrib><creatorcontrib>Arai, Koji</creatorcontrib><creatorcontrib>Brooks, Aidan F</creatorcontrib><creatorcontrib>Chakraborty, Rijuparna</creatorcontrib><creatorcontrib>Frolov, Valery V</creatorcontrib><creatorcontrib>Fritschel, Peter</creatorcontrib><creatorcontrib>King, Eleanor J</creatorcontrib><creatorcontrib>Tanner, David B</creatorcontrib><creatorcontrib>Yamamoto, Hiroaki</creatorcontrib><creatorcontrib>Mueller, Guido</creatorcontrib><title>In-situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances</title><title>arXiv.org</title><description>Thermal lensing in resonant optical interferometers such as those used for gravitational wave detection is a concern due to the negative impact on control signals and instrument sensitivity. In this paper we describe a method for monitoring the thermal state of such interferometers by probing the higher-order spatial mode resonances of the cavities within them. We demonstrate the use of this technique to measure changes in the Advanced LIGO input mode cleaner cavity geometry as a function of input power, and subsequently infer the optical absorption at the mirror surfaces at the level of 1 ppm per mirror. We also demonstrate the generation of a useful error signal for thermal state of the Advanced LIGO power recycling cavity by continuously tracking the first order spatial mode resonance frequency. Such an error signal could be used as an input to thermal compensation systems to maintain the interferometer cavity geometries in the presence of transients in circulating light power levels, thereby maintaining optimal sensitivity and maximizing the duty-cycle of the detectors.</description><subject>Control equipment</subject><subject>Error signals</subject><subject>Gravitational waves</subject><subject>Holes</subject><subject>Interferometers</subject><subject>Light levels</subject><subject>Optimization</subject><subject>Sensitivity</subject><subject>Thermal compensation</subject><subject>Thermal lensing</subject><subject>Thermodynamic properties</subject><subject>Tracking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMGKwkAMhgdBUNR3COy5MJ1u1busrHfvMtTUxrUTTdI97Hkf3BH07uEnP_mSb-SmoarKYv0ZwsQtVM_e-7Bchbqupu5_lwolG6DposTGUOgvGnECbsE6fET6eAG1aPhYCiqnmAz4atRkQil_tSjcYy4KvxTBsuuH0ulpIYGOTtlUsBxRoOcjvkQN6tyN23hRXDznzH1sv_ab7-IqfBtQ7XDmQVJGh-DXZRmWvqyr967uQVRTWA</recordid><startdate>20150208</startdate><enddate>20150208</enddate><creator>Mueller, Chris L</creator><creator>Fulda, Paul</creator><creator>Adhikari, Rana X</creator><creator>Arai, Koji</creator><creator>Brooks, Aidan F</creator><creator>Chakraborty, Rijuparna</creator><creator>Frolov, Valery V</creator><creator>Fritschel, Peter</creator><creator>King, Eleanor J</creator><creator>Tanner, David B</creator><creator>Yamamoto, Hiroaki</creator><creator>Mueller, Guido</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150208</creationdate><title>In-situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances</title><author>Mueller, Chris L ; Fulda, Paul ; Adhikari, Rana X ; Arai, Koji ; Brooks, Aidan F ; Chakraborty, Rijuparna ; Frolov, Valery V ; Fritschel, Peter ; King, Eleanor J ; Tanner, David B ; Yamamoto, Hiroaki ; Mueller, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20811260153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Control equipment</topic><topic>Error signals</topic><topic>Gravitational waves</topic><topic>Holes</topic><topic>Interferometers</topic><topic>Light levels</topic><topic>Optimization</topic><topic>Sensitivity</topic><topic>Thermal compensation</topic><topic>Thermal lensing</topic><topic>Thermodynamic properties</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Mueller, Chris L</creatorcontrib><creatorcontrib>Fulda, Paul</creatorcontrib><creatorcontrib>Adhikari, Rana X</creatorcontrib><creatorcontrib>Arai, Koji</creatorcontrib><creatorcontrib>Brooks, Aidan F</creatorcontrib><creatorcontrib>Chakraborty, Rijuparna</creatorcontrib><creatorcontrib>Frolov, Valery V</creatorcontrib><creatorcontrib>Fritschel, Peter</creatorcontrib><creatorcontrib>King, Eleanor J</creatorcontrib><creatorcontrib>Tanner, David B</creatorcontrib><creatorcontrib>Yamamoto, Hiroaki</creatorcontrib><creatorcontrib>Mueller, Guido</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mueller, Chris L</au><au>Fulda, Paul</au><au>Adhikari, Rana X</au><au>Arai, Koji</au><au>Brooks, Aidan F</au><au>Chakraborty, Rijuparna</au><au>Frolov, Valery V</au><au>Fritschel, Peter</au><au>King, Eleanor J</au><au>Tanner, David B</au><au>Yamamoto, Hiroaki</au><au>Mueller, Guido</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>In-situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances</atitle><jtitle>arXiv.org</jtitle><date>2015-02-08</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Thermal lensing in resonant optical interferometers such as those used for gravitational wave detection is a concern due to the negative impact on control signals and instrument sensitivity. In this paper we describe a method for monitoring the thermal state of such interferometers by probing the higher-order spatial mode resonances of the cavities within them. We demonstrate the use of this technique to measure changes in the Advanced LIGO input mode cleaner cavity geometry as a function of input power, and subsequently infer the optical absorption at the mirror surfaces at the level of 1 ppm per mirror. We also demonstrate the generation of a useful error signal for thermal state of the Advanced LIGO power recycling cavity by continuously tracking the first order spatial mode resonance frequency. Such an error signal could be used as an input to thermal compensation systems to maintain the interferometer cavity geometries in the presence of transients in circulating light power levels, thereby maintaining optimal sensitivity and maximizing the duty-cycle of the detectors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081126015 |
source | Publicly Available Content Database |
subjects | Control equipment Error signals Gravitational waves Holes Interferometers Light levels Optimization Sensitivity Thermal compensation Thermal lensing Thermodynamic properties Tracking |
title | In-situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=In-situ%20characterization%20of%20the%20thermal%20state%20of%20resonant%20optical%20interferometers%20via%20tracking%20of%20their%20higher-order%20mode%20resonances&rft.jtitle=arXiv.org&rft.au=Mueller,%20Chris%20L&rft.date=2015-02-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081126015%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20811260153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2081126015&rft_id=info:pmid/&rfr_iscdi=true |