Loading…

In-situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances

Thermal lensing in resonant optical interferometers such as those used for gravitational wave detection is a concern due to the negative impact on control signals and instrument sensitivity. In this paper we describe a method for monitoring the thermal state of such interferometers by probing the hi...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-02
Main Authors: Mueller, Chris L, Fulda, Paul, Adhikari, Rana X, Arai, Koji, Brooks, Aidan F, Chakraborty, Rijuparna, Frolov, Valery V, Fritschel, Peter, King, Eleanor J, Tanner, David B, Yamamoto, Hiroaki, Mueller, Guido
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mueller, Chris L
Fulda, Paul
Adhikari, Rana X
Arai, Koji
Brooks, Aidan F
Chakraborty, Rijuparna
Frolov, Valery V
Fritschel, Peter
King, Eleanor J
Tanner, David B
Yamamoto, Hiroaki
Mueller, Guido
description Thermal lensing in resonant optical interferometers such as those used for gravitational wave detection is a concern due to the negative impact on control signals and instrument sensitivity. In this paper we describe a method for monitoring the thermal state of such interferometers by probing the higher-order spatial mode resonances of the cavities within them. We demonstrate the use of this technique to measure changes in the Advanced LIGO input mode cleaner cavity geometry as a function of input power, and subsequently infer the optical absorption at the mirror surfaces at the level of 1 ppm per mirror. We also demonstrate the generation of a useful error signal for thermal state of the Advanced LIGO power recycling cavity by continuously tracking the first order spatial mode resonance frequency. Such an error signal could be used as an input to thermal compensation systems to maintain the interferometer cavity geometries in the presence of transients in circulating light power levels, thereby maintaining optimal sensitivity and maximizing the duty-cycle of the detectors.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081126015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081126015</sourcerecordid><originalsourceid>FETCH-proquest_journals_20811260153</originalsourceid><addsrcrecordid>eNqNjMGKwkAMhgdBUNR3COy5MJ1u1busrHfvMtTUxrUTTdI97Hkf3BH07uEnP_mSb-SmoarKYv0ZwsQtVM_e-7Bchbqupu5_lwolG6DposTGUOgvGnECbsE6fET6eAG1aPhYCiqnmAz4atRkQil_tSjcYy4KvxTBsuuH0ulpIYGOTtlUsBxRoOcjvkQN6tyN23hRXDznzH1sv_ab7-IqfBtQ7XDmQVJGh-DXZRmWvqyr967uQVRTWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081126015</pqid></control><display><type>article</type><title>In-situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances</title><source>Publicly Available Content Database</source><creator>Mueller, Chris L ; Fulda, Paul ; Adhikari, Rana X ; Arai, Koji ; Brooks, Aidan F ; Chakraborty, Rijuparna ; Frolov, Valery V ; Fritschel, Peter ; King, Eleanor J ; Tanner, David B ; Yamamoto, Hiroaki ; Mueller, Guido</creator><creatorcontrib>Mueller, Chris L ; Fulda, Paul ; Adhikari, Rana X ; Arai, Koji ; Brooks, Aidan F ; Chakraborty, Rijuparna ; Frolov, Valery V ; Fritschel, Peter ; King, Eleanor J ; Tanner, David B ; Yamamoto, Hiroaki ; Mueller, Guido</creatorcontrib><description>Thermal lensing in resonant optical interferometers such as those used for gravitational wave detection is a concern due to the negative impact on control signals and instrument sensitivity. In this paper we describe a method for monitoring the thermal state of such interferometers by probing the higher-order spatial mode resonances of the cavities within them. We demonstrate the use of this technique to measure changes in the Advanced LIGO input mode cleaner cavity geometry as a function of input power, and subsequently infer the optical absorption at the mirror surfaces at the level of 1 ppm per mirror. We also demonstrate the generation of a useful error signal for thermal state of the Advanced LIGO power recycling cavity by continuously tracking the first order spatial mode resonance frequency. Such an error signal could be used as an input to thermal compensation systems to maintain the interferometer cavity geometries in the presence of transients in circulating light power levels, thereby maintaining optimal sensitivity and maximizing the duty-cycle of the detectors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Control equipment ; Error signals ; Gravitational waves ; Holes ; Interferometers ; Light levels ; Optimization ; Sensitivity ; Thermal compensation ; Thermal lensing ; Thermodynamic properties ; Tracking</subject><ispartof>arXiv.org, 2015-02</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2081126015?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Mueller, Chris L</creatorcontrib><creatorcontrib>Fulda, Paul</creatorcontrib><creatorcontrib>Adhikari, Rana X</creatorcontrib><creatorcontrib>Arai, Koji</creatorcontrib><creatorcontrib>Brooks, Aidan F</creatorcontrib><creatorcontrib>Chakraborty, Rijuparna</creatorcontrib><creatorcontrib>Frolov, Valery V</creatorcontrib><creatorcontrib>Fritschel, Peter</creatorcontrib><creatorcontrib>King, Eleanor J</creatorcontrib><creatorcontrib>Tanner, David B</creatorcontrib><creatorcontrib>Yamamoto, Hiroaki</creatorcontrib><creatorcontrib>Mueller, Guido</creatorcontrib><title>In-situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances</title><title>arXiv.org</title><description>Thermal lensing in resonant optical interferometers such as those used for gravitational wave detection is a concern due to the negative impact on control signals and instrument sensitivity. In this paper we describe a method for monitoring the thermal state of such interferometers by probing the higher-order spatial mode resonances of the cavities within them. We demonstrate the use of this technique to measure changes in the Advanced LIGO input mode cleaner cavity geometry as a function of input power, and subsequently infer the optical absorption at the mirror surfaces at the level of 1 ppm per mirror. We also demonstrate the generation of a useful error signal for thermal state of the Advanced LIGO power recycling cavity by continuously tracking the first order spatial mode resonance frequency. Such an error signal could be used as an input to thermal compensation systems to maintain the interferometer cavity geometries in the presence of transients in circulating light power levels, thereby maintaining optimal sensitivity and maximizing the duty-cycle of the detectors.</description><subject>Control equipment</subject><subject>Error signals</subject><subject>Gravitational waves</subject><subject>Holes</subject><subject>Interferometers</subject><subject>Light levels</subject><subject>Optimization</subject><subject>Sensitivity</subject><subject>Thermal compensation</subject><subject>Thermal lensing</subject><subject>Thermodynamic properties</subject><subject>Tracking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMGKwkAMhgdBUNR3COy5MJ1u1busrHfvMtTUxrUTTdI97Hkf3BH07uEnP_mSb-SmoarKYv0ZwsQtVM_e-7Bchbqupu5_lwolG6DposTGUOgvGnECbsE6fET6eAG1aPhYCiqnmAz4atRkQil_tSjcYy4KvxTBsuuH0ulpIYGOTtlUsBxRoOcjvkQN6tyN23hRXDznzH1sv_ab7-IqfBtQ7XDmQVJGh-DXZRmWvqyr967uQVRTWA</recordid><startdate>20150208</startdate><enddate>20150208</enddate><creator>Mueller, Chris L</creator><creator>Fulda, Paul</creator><creator>Adhikari, Rana X</creator><creator>Arai, Koji</creator><creator>Brooks, Aidan F</creator><creator>Chakraborty, Rijuparna</creator><creator>Frolov, Valery V</creator><creator>Fritschel, Peter</creator><creator>King, Eleanor J</creator><creator>Tanner, David B</creator><creator>Yamamoto, Hiroaki</creator><creator>Mueller, Guido</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150208</creationdate><title>In-situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances</title><author>Mueller, Chris L ; Fulda, Paul ; Adhikari, Rana X ; Arai, Koji ; Brooks, Aidan F ; Chakraborty, Rijuparna ; Frolov, Valery V ; Fritschel, Peter ; King, Eleanor J ; Tanner, David B ; Yamamoto, Hiroaki ; Mueller, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20811260153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Control equipment</topic><topic>Error signals</topic><topic>Gravitational waves</topic><topic>Holes</topic><topic>Interferometers</topic><topic>Light levels</topic><topic>Optimization</topic><topic>Sensitivity</topic><topic>Thermal compensation</topic><topic>Thermal lensing</topic><topic>Thermodynamic properties</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Mueller, Chris L</creatorcontrib><creatorcontrib>Fulda, Paul</creatorcontrib><creatorcontrib>Adhikari, Rana X</creatorcontrib><creatorcontrib>Arai, Koji</creatorcontrib><creatorcontrib>Brooks, Aidan F</creatorcontrib><creatorcontrib>Chakraborty, Rijuparna</creatorcontrib><creatorcontrib>Frolov, Valery V</creatorcontrib><creatorcontrib>Fritschel, Peter</creatorcontrib><creatorcontrib>King, Eleanor J</creatorcontrib><creatorcontrib>Tanner, David B</creatorcontrib><creatorcontrib>Yamamoto, Hiroaki</creatorcontrib><creatorcontrib>Mueller, Guido</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mueller, Chris L</au><au>Fulda, Paul</au><au>Adhikari, Rana X</au><au>Arai, Koji</au><au>Brooks, Aidan F</au><au>Chakraborty, Rijuparna</au><au>Frolov, Valery V</au><au>Fritschel, Peter</au><au>King, Eleanor J</au><au>Tanner, David B</au><au>Yamamoto, Hiroaki</au><au>Mueller, Guido</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>In-situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances</atitle><jtitle>arXiv.org</jtitle><date>2015-02-08</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Thermal lensing in resonant optical interferometers such as those used for gravitational wave detection is a concern due to the negative impact on control signals and instrument sensitivity. In this paper we describe a method for monitoring the thermal state of such interferometers by probing the higher-order spatial mode resonances of the cavities within them. We demonstrate the use of this technique to measure changes in the Advanced LIGO input mode cleaner cavity geometry as a function of input power, and subsequently infer the optical absorption at the mirror surfaces at the level of 1 ppm per mirror. We also demonstrate the generation of a useful error signal for thermal state of the Advanced LIGO power recycling cavity by continuously tracking the first order spatial mode resonance frequency. Such an error signal could be used as an input to thermal compensation systems to maintain the interferometer cavity geometries in the presence of transients in circulating light power levels, thereby maintaining optimal sensitivity and maximizing the duty-cycle of the detectors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081126015
source Publicly Available Content Database
subjects Control equipment
Error signals
Gravitational waves
Holes
Interferometers
Light levels
Optimization
Sensitivity
Thermal compensation
Thermal lensing
Thermodynamic properties
Tracking
title In-situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=In-situ%20characterization%20of%20the%20thermal%20state%20of%20resonant%20optical%20interferometers%20via%20tracking%20of%20their%20higher-order%20mode%20resonances&rft.jtitle=arXiv.org&rft.au=Mueller,%20Chris%20L&rft.date=2015-02-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081126015%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20811260153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2081126015&rft_id=info:pmid/&rfr_iscdi=true