Loading…
Photo-Thermoelectric Effect at a Graphene Interface Junction
We investigate the optoelectronic response of a graphene interface junction, formed with bilayer and single-layer graphene, by photocurrent (PC) microscopy. We measure the polarity and amplitude of the PC while varying the Fermi level by tuning a gate voltage. These measurements show that the genera...
Saved in:
Published in: | arXiv.org 2009-07 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the optoelectronic response of a graphene interface junction, formed with bilayer and single-layer graphene, by photocurrent (PC) microscopy. We measure the polarity and amplitude of the PC while varying the Fermi level by tuning a gate voltage. These measurements show that the generation of PC is by a photo-thermoelectric effect. The PC displays a factor of ~10 increase at the cryogenic temperature as compared to room temperature. Assuming the thermoelectric power has a linear dependence on the temperature, the inferred graphene thermal conductivity from temperature dependent measurements has a T^{1.5} dependence below ~100 K, which agrees with recent theoretical predictions. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0907.3173 |