Loading…
Scaling in Plateau-to-Plateau Transition: A Direct Connection of Quantum Hall Systems with Anderson Localization Model
The quantum Hall plateau transition was studied at temperatures down to 1 mK in a random alloy disordered high mobility two-dimensional electron gas. A perfect power-law scaling with \kappa=0.42 was observed from 1.2K down to 12mK. This perfect scaling terminates sharply at a saturation temperature...
Saved in:
Published in: | arXiv.org 2009-05 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The quantum Hall plateau transition was studied at temperatures down to 1 mK in a random alloy disordered high mobility two-dimensional electron gas. A perfect power-law scaling with \kappa=0.42 was observed from 1.2K down to 12mK. This perfect scaling terminates sharply at a saturation temperature of T_s~10mK. The saturation is identified as a finite-size effect when the quantum phase coherence length (L_{\phi} ~ T^{-p/2}) reaches the sample size (W) of millimeter scale. From a size dependent study, T_s \propto W^{-1} was observed and p=2 was obtained. The exponent of the localization length, determined directly from the measured \kappa and p, is \nu=2.38, and the dynamic critical exponent z = 1. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0905.0885 |