Loading…
A General Metric for Riemannian Manifold Hamiltonian Monte Carlo
Markov Chain Monte Carlo (MCMC) is an invaluable means of inference with complicated models, and Hamiltonian Monte Carlo, in particular Riemannian Manifold Hamiltonian Monte Carlo (RMHMC), has demonstrated impressive success in many challenging problems. Current RMHMC implementations, however, rely...
Saved in:
Published in: | arXiv.org 2013-09 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Betancourt, M J |
description | Markov Chain Monte Carlo (MCMC) is an invaluable means of inference with complicated models, and Hamiltonian Monte Carlo, in particular Riemannian Manifold Hamiltonian Monte Carlo (RMHMC), has demonstrated impressive success in many challenging problems. Current RMHMC implementations, however, rely on a Riemannian metric that limits their application to analytically-convenient models. In this paper I propose a new metric for RMHMC without these limitations and verify its success on a distribution that emulates many hierarchical and latent models. |
doi_str_mv | 10.48550/arxiv.1212.4693 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081424221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081424221</sourcerecordid><originalsourceid>FETCH-LOGICAL-a511-16f861019329bf37e3f8982054ca172e61047982869b2a9ef671f7abeca9a5003</originalsourceid><addsrcrecordid>eNotj01Lw0AURQdBsNTuXQ64Tpz35ntnCdoKLYJ0X17iDKSkMzpJxZ9voK4unAvnchl7AFErp7V4ovLb_9SAgLUyXt6wBUoJlVOId2w1jichBBqLWssFe17zTUih0MD3YSp9x2Mu_KMPZ0qpp8T3lPqYh0--pXM_TPkKc5oCb6gM-Z7dRhrGsPrPJTu8vhyabbV737w1611FGqACE50BAV6ib6O0QUbnHQqtOgKLYe6UnYEzvkXyIRoL0VIbOvKkhZBL9njVfpX8fQnjdDzlS0nz4hGFA4XzO5B_RBpIsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081424221</pqid></control><display><type>article</type><title>A General Metric for Riemannian Manifold Hamiltonian Monte Carlo</title><source>Publicly Available Content Database</source><creator>Betancourt, M J</creator><creatorcontrib>Betancourt, M J</creatorcontrib><description>Markov Chain Monte Carlo (MCMC) is an invaluable means of inference with complicated models, and Hamiltonian Monte Carlo, in particular Riemannian Manifold Hamiltonian Monte Carlo (RMHMC), has demonstrated impressive success in many challenging problems. Current RMHMC implementations, however, rely on a Riemannian metric that limits their application to analytically-convenient models. In this paper I propose a new metric for RMHMC without these limitations and verify its success on a distribution that emulates many hierarchical and latent models.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1212.4693</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Markov analysis ; Markov chains ; Monte Carlo simulation ; Riemann manifold</subject><ispartof>arXiv.org, 2013-09</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2081424221?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Betancourt, M J</creatorcontrib><title>A General Metric for Riemannian Manifold Hamiltonian Monte Carlo</title><title>arXiv.org</title><description>Markov Chain Monte Carlo (MCMC) is an invaluable means of inference with complicated models, and Hamiltonian Monte Carlo, in particular Riemannian Manifold Hamiltonian Monte Carlo (RMHMC), has demonstrated impressive success in many challenging problems. Current RMHMC implementations, however, rely on a Riemannian metric that limits their application to analytically-convenient models. In this paper I propose a new metric for RMHMC without these limitations and verify its success on a distribution that emulates many hierarchical and latent models.</description><subject>Computer simulation</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Monte Carlo simulation</subject><subject>Riemann manifold</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj01Lw0AURQdBsNTuXQ64Tpz35ntnCdoKLYJ0X17iDKSkMzpJxZ9voK4unAvnchl7AFErp7V4ovLb_9SAgLUyXt6wBUoJlVOId2w1jichBBqLWssFe17zTUih0MD3YSp9x2Mu_KMPZ0qpp8T3lPqYh0--pXM_TPkKc5oCb6gM-Z7dRhrGsPrPJTu8vhyabbV737w1611FGqACE50BAV6ib6O0QUbnHQqtOgKLYe6UnYEzvkXyIRoL0VIbOvKkhZBL9njVfpX8fQnjdDzlS0nz4hGFA4XzO5B_RBpIsA</recordid><startdate>20130918</startdate><enddate>20130918</enddate><creator>Betancourt, M J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130918</creationdate><title>A General Metric for Riemannian Manifold Hamiltonian Monte Carlo</title><author>Betancourt, M J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a511-16f861019329bf37e3f8982054ca172e61047982869b2a9ef671f7abeca9a5003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer simulation</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Monte Carlo simulation</topic><topic>Riemann manifold</topic><toplevel>online_resources</toplevel><creatorcontrib>Betancourt, M J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betancourt, M J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Metric for Riemannian Manifold Hamiltonian Monte Carlo</atitle><jtitle>arXiv.org</jtitle><date>2013-09-18</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>Markov Chain Monte Carlo (MCMC) is an invaluable means of inference with complicated models, and Hamiltonian Monte Carlo, in particular Riemannian Manifold Hamiltonian Monte Carlo (RMHMC), has demonstrated impressive success in many challenging problems. Current RMHMC implementations, however, rely on a Riemannian metric that limits their application to analytically-convenient models. In this paper I propose a new metric for RMHMC without these limitations and verify its success on a distribution that emulates many hierarchical and latent models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1212.4693</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081424221 |
source | Publicly Available Content Database |
subjects | Computer simulation Markov analysis Markov chains Monte Carlo simulation Riemann manifold |
title | A General Metric for Riemannian Manifold Hamiltonian Monte Carlo |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Metric%20for%20Riemannian%20Manifold%20Hamiltonian%20Monte%20Carlo&rft.jtitle=arXiv.org&rft.au=Betancourt,%20M%20J&rft.date=2013-09-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1212.4693&rft_dat=%3Cproquest%3E2081424221%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a511-16f861019329bf37e3f8982054ca172e61047982869b2a9ef671f7abeca9a5003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2081424221&rft_id=info:pmid/&rfr_iscdi=true |