Loading…

Structures of G(2) type and nonintegrable distributions in characteristic p

Lately we observe: (1) an upsurge of interest (in particular, triggered by a paper by Atiyah and Witten) to manifolds with G(2)-type structure; (2) classifications are obtained of simple (finite dimensional and graded vectorial) Lie superalgebras over fields of complex and real numbers and of simple...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-03
Main Authors: Grozman, Pavel, Leites, Dimitry
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Grozman, Pavel
Leites, Dimitry
description Lately we observe: (1) an upsurge of interest (in particular, triggered by a paper by Atiyah and Witten) to manifolds with G(2)-type structure; (2) classifications are obtained of simple (finite dimensional and graded vectorial) Lie superalgebras over fields of complex and real numbers and of simple finite dimensional Lie algebras over algebraically closed fields of characteristic p>3; (3) importance of nonintegrable distributions in (1) -- (2). We add to interrelation of (1)--(3) an explicit description of several exceptional simple Lie algebras for p=2, 3 (Melikyan algebras; Brown, Ermolaev, Frank, and Skryabin algebras) as subalgebras of Lie algebras of vector fields preserving nonintegrable distributions analogous to (or identical with) those preserved by G(2), O(7), Sp(4) and Sp(10). The description is performed in terms of Cartan-Tanaka-Shchepochkina prolongs and is similar to descriptions of simple Lie superalgebras of vector fields with polynomial coefficients. Our results illustrate usefulness of Shchepochkina's algorithm and SuperLie package; two families of simple Lie algebras found in the process might be new.
doi_str_mv 10.48550/arxiv.0509400
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081464673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081464673</sourcerecordid><originalsourceid>FETCH-proquest_journals_20814646733</originalsourceid><addsrcrecordid>eNqNyrsOAUEUgOGJRELQqk-iocDZuaxVi0uipJexZpmNzKwzM8LbU3gA1V98P2PDDGeyUArnml72OUOFS4nYYl0uRDYtJOcdNgihRkSeL7hSosv2h0ipjIlMAF_BdswnEN-NAe0u4LyzLpor6fPdwMWGSPacovUugHVQ3jTpMhr6gi2h6bN2pe_BDH7tsdFmfVztpg35RzIhnmqfyH3pxLHIZC7zhRD_XR-NVEK5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081464673</pqid></control><display><type>article</type><title>Structures of G(2) type and nonintegrable distributions in characteristic p</title><source>Publicly Available Content Database</source><creator>Grozman, Pavel ; Leites, Dimitry</creator><creatorcontrib>Grozman, Pavel ; Leites, Dimitry</creatorcontrib><description>Lately we observe: (1) an upsurge of interest (in particular, triggered by a paper by Atiyah and Witten) to manifolds with G(2)-type structure; (2) classifications are obtained of simple (finite dimensional and graded vectorial) Lie superalgebras over fields of complex and real numbers and of simple finite dimensional Lie algebras over algebraically closed fields of characteristic p&gt;3; (3) importance of nonintegrable distributions in (1) -- (2). We add to interrelation of (1)--(3) an explicit description of several exceptional simple Lie algebras for p=2, 3 (Melikyan algebras; Brown, Ermolaev, Frank, and Skryabin algebras) as subalgebras of Lie algebras of vector fields preserving nonintegrable distributions analogous to (or identical with) those preserved by G(2), O(7), Sp(4) and Sp(10). The description is performed in terms of Cartan-Tanaka-Shchepochkina prolongs and is similar to descriptions of simple Lie superalgebras of vector fields with polynomial coefficients. Our results illustrate usefulness of Shchepochkina's algorithm and SuperLie package; two families of simple Lie algebras found in the process might be new.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0509400</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Algorithms ; Fields (mathematics) ; Lie groups ; Mathematical analysis ; Polynomials ; Real numbers</subject><ispartof>arXiv.org, 2015-03</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2081464673?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25735,27907,36994,44572</link.rule.ids></links><search><creatorcontrib>Grozman, Pavel</creatorcontrib><creatorcontrib>Leites, Dimitry</creatorcontrib><title>Structures of G(2) type and nonintegrable distributions in characteristic p</title><title>arXiv.org</title><description>Lately we observe: (1) an upsurge of interest (in particular, triggered by a paper by Atiyah and Witten) to manifolds with G(2)-type structure; (2) classifications are obtained of simple (finite dimensional and graded vectorial) Lie superalgebras over fields of complex and real numbers and of simple finite dimensional Lie algebras over algebraically closed fields of characteristic p&gt;3; (3) importance of nonintegrable distributions in (1) -- (2). We add to interrelation of (1)--(3) an explicit description of several exceptional simple Lie algebras for p=2, 3 (Melikyan algebras; Brown, Ermolaev, Frank, and Skryabin algebras) as subalgebras of Lie algebras of vector fields preserving nonintegrable distributions analogous to (or identical with) those preserved by G(2), O(7), Sp(4) and Sp(10). The description is performed in terms of Cartan-Tanaka-Shchepochkina prolongs and is similar to descriptions of simple Lie superalgebras of vector fields with polynomial coefficients. Our results illustrate usefulness of Shchepochkina's algorithm and SuperLie package; two families of simple Lie algebras found in the process might be new.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Fields (mathematics)</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Real numbers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrsOAUEUgOGJRELQqk-iocDZuaxVi0uipJexZpmNzKwzM8LbU3gA1V98P2PDDGeyUArnml72OUOFS4nYYl0uRDYtJOcdNgihRkSeL7hSosv2h0ipjIlMAF_BdswnEN-NAe0u4LyzLpor6fPdwMWGSPacovUugHVQ3jTpMhr6gi2h6bN2pe_BDH7tsdFmfVztpg35RzIhnmqfyH3pxLHIZC7zhRD_XR-NVEK5</recordid><startdate>20150325</startdate><enddate>20150325</enddate><creator>Grozman, Pavel</creator><creator>Leites, Dimitry</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150325</creationdate><title>Structures of G(2) type and nonintegrable distributions in characteristic p</title><author>Grozman, Pavel ; Leites, Dimitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20814646733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Fields (mathematics)</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Real numbers</topic><toplevel>online_resources</toplevel><creatorcontrib>Grozman, Pavel</creatorcontrib><creatorcontrib>Leites, Dimitry</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grozman, Pavel</au><au>Leites, Dimitry</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Structures of G(2) type and nonintegrable distributions in characteristic p</atitle><jtitle>arXiv.org</jtitle><date>2015-03-25</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Lately we observe: (1) an upsurge of interest (in particular, triggered by a paper by Atiyah and Witten) to manifolds with G(2)-type structure; (2) classifications are obtained of simple (finite dimensional and graded vectorial) Lie superalgebras over fields of complex and real numbers and of simple finite dimensional Lie algebras over algebraically closed fields of characteristic p&gt;3; (3) importance of nonintegrable distributions in (1) -- (2). We add to interrelation of (1)--(3) an explicit description of several exceptional simple Lie algebras for p=2, 3 (Melikyan algebras; Brown, Ermolaev, Frank, and Skryabin algebras) as subalgebras of Lie algebras of vector fields preserving nonintegrable distributions analogous to (or identical with) those preserved by G(2), O(7), Sp(4) and Sp(10). The description is performed in terms of Cartan-Tanaka-Shchepochkina prolongs and is similar to descriptions of simple Lie superalgebras of vector fields with polynomial coefficients. Our results illustrate usefulness of Shchepochkina's algorithm and SuperLie package; two families of simple Lie algebras found in the process might be new.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0509400</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081464673
source Publicly Available Content Database
subjects Algebra
Algorithms
Fields (mathematics)
Lie groups
Mathematical analysis
Polynomials
Real numbers
title Structures of G(2) type and nonintegrable distributions in characteristic p
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Structures%20of%20G(2)%20type%20and%20nonintegrable%20distributions%20in%20characteristic%20p&rft.jtitle=arXiv.org&rft.au=Grozman,%20Pavel&rft.date=2015-03-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0509400&rft_dat=%3Cproquest%3E2081464673%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20814646733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2081464673&rft_id=info:pmid/&rfr_iscdi=true